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1 - ABSTRACT 

The topic of this work is study of convection in conducting viscous fluids 
'i 

bounded by an infinite horizontal layer under the influence of both Coriolis and 

Lorentz forces [18,12]. This work is devoted to the solution and comparison of two 

problems mainly dealing with stress-free and rigid boundary. The basic equations 

are continuity, the momentum, the energy and magnetic induction along with the 

auxiliary relations based on Boussinesq approximation [9]. The basic phenomenon 

o i  siabiiiiy ior ine steady state solution is studied. The mmplex eigen values 

determine the boundaries of region for instability. 

Kevwords:- Convection, Magnetic field, Coriolis forces, Lorentz forces, Galerkin 

methods, Eigen value problems, stability problems, nonlinear problems and Benard 

cell. 
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2. MATHEMATICAL FORMULATION OF THE PROBLEM 

2.1 Basic Equations 

Consider a horizontai layer of fluid contained between two boundaries 

separated by the distance d. The lower and upper surfaces with constant 

tempsrature as maintainsd at T, ax! T2 respectively. The lay.ei is rotating about a 

vertical axis with an angular velocity Q. We assume that the centrifugal force is 

negligible in comparison with gravity. This layer is permeated by a vertical magnetic 

field with a constant flux density B.  tie analysis is based on the Boussinesq 

approximation of the equation of motion and the heat conduction equation. Using d, 

d x ,  (T, - T,) / R and g as scales of length, time, temperature and magnetic flux 

density, where: 

And k is the vertical unit vector opposite to the direction crf gravity g, h is  the 

magnetic difusivity, p the magnetic permeability, R is the Rayleigh number, P is the 
C 

Prandtl number, Q the Chandrasekhar number, y is the coefficient of the thermal 

expansion, p is the mean density and v is the kinematics viscosity of the fluid, x is 

the thermal difusivity of the fluid. 

The dimensionless equation of motion according to Boussinesq approximation [5] is 

aiven by: 
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The equation of continuity and of the equation of the source free magnetic field are 

given by 
C 

V.y=O V.b=O (2) 

The energy equation is 

The equation of magnetic induction is 

I(? b+y.Vb-b.Vy = k . y + v 2 b  
A. a t -  1 
The solenoidal vector fields y and b are represented in the form [1,20] 

where; S $ = V X ( V X  ~ $ ) , E ~ = v x  kcp 

~ I I = V X ( V X  k h ) a n d ~ ' g ' = ~ x  kg 

The boundary conditions for free surfaces can be expressed [4] in the form 

And the boundary conditions for rigid surfaces can be expressecf in the form 
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Operating with 6 and E on (1) (see [3]) and rewriting as the following system for the 

unknown scaiar fields 4,(pI8, h and g ;  and using these representations in the basic 

equations we get 

d,A@ + V2A, 9 = 0 

where; A, = d& + d2,. 

Hence the equations of motion take the following form using (1 1) we get: 
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2.2 The Steady State Problem 

Assuming the functions +,cp and 8 depend only on z and x. I assuming also that 

X h > > ~  such that all terms multiplied by - can be neglected. We find that the general 
h 

solution which satisfies the stress-free boundary conditions by applying steady 

solution due to Galerkin's method [lo] has the form 

1 
I$= Canmtjnln = Canmcos m a x  sin nx(z+-) 

n,m n,m 2 

1 
9 =  ~~~~~6~~~ = ~ c ~ , , , c o s  max  sin nx(z+-) 

n,m n,m 2 

Also the rigid boundary conditions [5,11]; 
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Where the functionsg, (2) and f,, (2) are represented as follows 

1 
gn (z) = sinnx(z+-) 

2 

Where /I,andp,(n = 1,2,3, ...) are the positive roots of the equations 
*:, 

tanh(i112) + tan(A/2 )=0  

coth (1-112)-cot(p/2)=0 

When defined in this manner, the functions c,(z) and s,,(z) have the properties 

112 lm cIII(4 cn (zW = 1-y; s,. (4 Sn ( z ) b  = 6 ,  (21 1 

Where, a,,, is the Kronecker delta 
C 

The substitution of 4,cp and 0 from equation (15) and (16) into the system of 

equations of steady motion (12-14) in the case stress-free and rigid boundary 

respectively, the parti,al differential equations reduce to a system of nonlinear 
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Algebraic equations.. Employing the orthogonality of the trigonometric functions 

(bllm, qnIn and GnIn over the interval -1/2sZd/2, the following system of equations is 

Obtained which allov, the determination of the coefficierlts a , , ,  b,,,, and cnm 

[7,9,12,21] in the form 

C ant,, akl 1;trski + anm~i2m + cnmlfArJ + Rb,, I?;, = 0 (22a) 
n,m 

C' 

C a~ini  b c i  1 f L s k r  + bntn~%s -0 anln ':%s = 0 
n,m 

(22b) 

(9) 1"O' = 0 C P anrn Cki ~%rsiti - ~ n m I n m r s  + Raam nmrs 
n,ln 

(224 

In order to compute the unknown coefficients a,,,, b,, and c,,,, it is necessary to 

- truncate the representation (18) at a sufficiently high level. Hence, choosing a 

truncation parameter N such that all 

Assuming that the truncation parameter 

coefficients with n+m>N are negligible. 

1 
N is an even integer. we have -N(N + 1) 

2 

1 
equations to be solved. Starting with a guessed solution, we use a -N(N + 1) 

2 

dimensional Newton-Raphson iteration procedure to obtain the solution [15,19]. The 

satisfactory approximation is reached if it differs by a sufficiently small amount from 

the solution obtained with N+2 instead of N terms. The summation convention have 

been applied to (15) or (16). The calculation of the matrices I(") from the terms 
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Given in (22) are straightforward. Using angular brackets b !ndicate an average 

over the fluid layer, we can write 

't!l& = (@fS 6'[(6@ " ( P ) ' ~ ( ~ @  + 'I)]). 

2.3 The Stability Problem 

We can superimpose infinitesimal disturbances in the case of stress-free of 

1 
Where; g,l(z) = sin(nn (z + -)) 

2 

Taking the rigid boundary in the form 
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respectively in each case. The equations for the field ( $ , ~ , 8 )  of infinitesimal 

disturbances are obtained by replacing t$,p and @ in (8-1 0) by 

(9 + $,(p + @ and 8' +0) respectively. And subtracting the equations for the steady 

solution {4,cp,B) i.e. (12-14) we get 

a, (V2b2$) +6.[(6$ + E cp).v(6$ + E i j)  

+ (66 + E @). V(69 + E (p)] 

= v4b2$ - b2G - 2 i2 a,A2@ - Q i3;A2$ 

2.4 Eigen Value Problems: 

The variables 6,@ and 8 are satisfied by same boundary conditions (6) and 

(7) in each case. From (29-31) we have, substitution of the expansions (23-25) and 
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(26-28) into (29-31) leads to the equations for the unknowns allln, bnm and c, 

(2.6). When the same procedure as in the steady problem is used i.e. (as in the 

Case of the steady problem, a system of algebraic equalkns is obtained by 

multiplying equations (29-31 ) by (4 cpr, and Or,) Expi-i(dx+by)-o t ]  respectively 

and averaging it over ine fiuid iayer in each a s e  (-1125 z :5612) the resulting by 

using [9,21] are linear homogeneous equations representing an eigen values 

problem with eigen values o 



Planar Convection in f he Presence of External Fields 

(10-1 2) is a system of linear homogeneous equations representing an eigenvalues 

problem with the eigenvalues o. The safne truncation parameter N is used for the 

disturbance repesentation (32-34) as for the steady solution. Usuar y the 

eigenvalues o depends smoothly on the parameters of the problem and accurate 

results can be ob!ained by in?erpo!etIan from a fairly computed eigenvalues o. In 

order to apply the usual algebraic eigenvalues methods, the indices n and m,r and s 

had to be combined to form a single running subscript. In addition the coefficients 

- - 
a,. b, and CI1,,, were combined sequentially to form a single variable. The analysis 

of the eigenvalues problem (32-34) is further simplified by noticing that it separates 
C 

into foUF subsystems. 

(1) The equations with even n + m. coefficients 

(2)  The equations with odd n + m. coefficients 

(3) In each case the symmetry of the steady solution with respect to the x direction 

allows a further separation into solutions which are either (i) symmetric or (ii) anti- 

symmetric in x. It should be noted that in all cases the coeflicients &, have the 

opposite symmetry properties to the coefficients Z,, and 'E,,,. In the following, all 

references to symmetry properties will be kade with respect to the latter coefficients. 

The primary objective of the analysis of problem (32-34) is to determine o as a 

function of a, P and the Rayleigh number R at which the real part of the eigenvalues 

0 with largest real part vanishes. The corresponding eigenvectcr describes the 
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Disturbance leading to instability of the steady solution when the Rayleigh number 

passes through the marginal value. Even though system (32-34) has been 

separated into four subsystems the amount of computation for the deiermination of 

stability boundaries is still substantial because of the large number of parameters 

involved. For this reason only a few representative cases will be investigated. 

Fortunately the dependence of the eigenvalues o on various parameters is smooth 

and interpolation formulae can be used successfully to reduce the cost of 

computation [6]. The infinitesimal transformation of the steady vortex solution at 4 

=%lax the eigenvalues o should equal zero. The details of the dependence of the 

eigenvalues a on wave value b are complicated by the fact that imaginary part 

vanishes for sufficiently small values of b. ('141. 

2.5 The Steady Solution 

Most of the numerical computations of two-dimensional   convection published 

in the literature have been carried out without consideration of the stability of the 

solution. Thus in many cases solution has been obtained for values of the 

parameters for which the two-dimensional solution is physically not realizable. This 

is particularly true in the case of rotating layer, in each case the stability domain of 

convection rolls is much smaller than in the non-rotating case. The heat transfer is 

usually represented in terms by the Nusselt number which describes the ratio 

between the heat transfer with convection and what it would be without convection at 

a given Rayleigh number. 
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In describing the numerical results for steady convection rolls we shall 

concentrate on the convective heat transfer, which not only is the parameter of 

primary physical interest, but also appears to characterizeabest the other aspects of 

convection as viscous dissipation occurs at the same as the convection heat 

transfer. A number of numerical studies of convection rolls have yielded results for 

the Nusselt number [17]. J 

N u = l + < y . k e > / R  (35) 

3. RESULTS: 

Fig.(l) shows a relation between the Nusselt number Nu and reduced Rayleigh 

(RIRc) for water at a = a c  with different boundary condit~ons. The onset of 

instability of convection occurs at the critical Rayleigh Rc with Nu=?. This figure is 

for an electric fluid with critical wave number ac=2.2 and no external fields. In the 
b 

Case of stress-free boundary, we note that the convection increases faster than for 

the rigid boundary case. This figure illustrates the effect of presence of rigid 

boundary on the heat transfer. It is clear that the rigid wall inhibits the convection 

heat transport. Note that S stands for stress-free and R stands for rigid boundary. 

Fig. (2) shows the real part of the eigenvalues oas a function of the Rayleigh 

number. The objective of this figure is to determine the critical Rayleigh number RiI 

by intersecting the line of zero o with these curves. It is obvious that with the 

existence of the magnetic field, Q = 100 that RII is proportional to rotation for all 
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Cases. it could be concluded that increasifig the rotation increases RII. Moreover it 

can also be observed that the two curves for rigid boundary case have different 

slopes whife those with stress-free surface have the same slop. 

Fig. (3) shows the dependence of the wave number (a) on the Rayleigh 

number R in the lowest mode for both cases of boundary conditions. The minimum 

At a finite value ac reflects the property that narrow convectiori cells corresponding 

to high values of a are ineffective because of the strong heat exchange between up 

and down going fluid. For very large-scale motions the vertical comparison to 
6 

horizontal component and the release of potential energy is less efficient. The letter 

effect compensated by a decrease of thermal dissipation in the case of thermally 

insulating boundaries. The critical wave number ac indicates that the horizontal 

extent of the circulation motion comparable with the depth of the layer. In the stress- 

free case is less restricting boundary the horizontal extend is somewhat larger. 

4. CONCLUSIONS 

The study of the convection in an dlectric conducting viscous fluid under the 

influence of rotation and magnetic field was investigated. 

Two kinds of boundary conditions were used (1) stress-free boundary, (2) 

rigid boundary. The basic equations for continuity, momentum, energy, and 

magnetic induction were written along with the auxiliary relations. Boussinesq 

approximation [5] was used. The basic equations were solvec by Galerkin spectral 

[lo] method and Newton's method [8]. For each case of the boundary condition the 

2 16 
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Steady state solution was obtained first, then the stability was investigated. The 

critical boundary stability region was determined. 

Steady Solution: 

-1 -The Coriolis force appears to have a co6straining effect on steady convection by 

delaying the onset of convection. 

2-The Lorentz force appears to have a constraining effect on steady convection by 

delaying the onset of convection. 

3- Both forces (Lorentz force and Coriolis force) accelerate the onset of instability 

for steady convection. 

4- In the case of rigid boundary we need a greater angular velocity R than in case 

of Stress-free boundary to get the same effect on steady convection. 
6 

Stability Problem: 

The effect of the magnetic field on the stability is contradicted with influence 

of the Rotation on the stability while the increasing of the rotation leads to instability; 

it is contradicted with the influence of the magnetic field. The convection is 

insatiable 

When the Rayleigh number increases beyond critical value. The steady solution of 

" the small amplitude is considered insatiable with increase of the rotation rate. 

The wave number remains constafit in spite of the increase of the Rayleigh 

number. The dependence of the stability properties of corvection rolls on the 

magnetic field strength are in marked contrast to the dependence of the stability on 
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the rotation rate in a layer rotating about a vertical axis. While the regions of stable 

rolls is strongly reduced with increasing rotation rate and finally vanishes at the 

Critical value of the angular velocity, the opposite influence of the magnetic field is 

found. The mathematical origin of this contrasting behavior has already been 

discussed in (sec.2.2). The absence nf yedic31 vorticity of steady convection rolls in 

the presence of a magnetic field is the basic physical reason for the difference in the 

Otherwise rather similar influences of magnetic field and rotation. The most 

surprising result of the present analysis is the phenomenor that convection rolls 

setting in at the critical Rayleigh number becomes unstable as soon as the Rayleigh 

number increases beyond the critical value. The steady solution with small 

amplitude is unstable when the rotation rate is sufficiently large. The value of the 

parameter a for the most stable solution remains essentially constant with increasing 

Rayleigh number. Like the stationary solution with maximum heat transfer, however 

less pronounced, the most stable solution'has a slightly increasing wave number a. 

About the convictions with rotation; the rotation decreases the rate of the convection, 

Rigid boundary needs strong rotation to effect the convection rnore than Stress-free 

problem. In both cases Rigid and free surfaces for Q=100 appear a constraining 

effect on stability convection delay of the onset of instability with increasing angular ' 

velocity R. 
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