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Planar Convection in The Presence of External Fieids
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1-ABSTRACT

The ’topic of this work is study of convection in conducting viscous ﬂuids
bounded by an infinite horizontal layer t:}lder the influence of both Coriolis and
Lorentz férces [18,12]. This work ié devoted to the solution and comparison of two
problems mainly dealing with stress-free and rigid boundary. The basic equations
are continuity, the 'momentum, the energy and magnetic induction along with the
auxiliary reiations based on Boussinesq approximation [9]. The basic phenomenon
of stability for the sieady state solution is studied. The complex eigen values
determine the boundaries of region for instability.
Keywords:- Convection, Magnetic field, Cgriolis forces, Lorentz forces, Galerkin

methods, Eigen value problems, stability problems, nonlinear problems and Benard

cell.
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Y,

2, MATHEMA‘%ICAL FORMULATION OF THE PROBLEM.
2.1 Basic Equations

Consider a horizontai layer of fluid contained between two boundaries
separated : by the distance d. The lower and upper surfaces with constant 7 \
temperature as maintained at T, and T, respectively. The layer is rotating about a
vertical axis with an angular velocity Q. We assume that the centrifugal force is
negligible in comparison with gravity. This layer is permeated by a vertical magnetic
field with a constant flux density B. The analysis is based on the Boussinesq

approximation of the equation of motion and the heat conduction equation. Using d,

d%, (T2 —Tl)/ R and B as scales of length, time, temperature and magnetic flux

density, where:

B-k=yd/i, R=y(T,-T)gd’/ gv,p=v/y, Q=bd"/ puvA

And k is the vertical unit vector opposite to vthe direction of gravity g, Aisthe
magnetic difusivity, u the magnetic permeability, R is the Rayleigh number, P is the
Prandtl number, Q the Chandrasekhar anber, y is the coefficient of the thermal

expansion, p is the mean. density and v is the kinematics viscosity of the fluid, y is

the thermal difusivity of the fluid.

The dimensionless equation of motion according to Boussinesq approximation [5] is

given by:
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%t‘f +VV V=Vy+k6-VIT-20k x V+0(B.V)b 1)

The equatioh of continuity and of the equation of the source free magnetic field are

given by
Vv=0 V.b=0 . (2)
The energy equation is

P(% +y.V9) =V?0+Rk.v (3)

The equation of magnetic induction isv

-’Q(i b+y.Vl_)—b.Vy) =k.y+V?b : (4)
A\t

‘The solenoidal vector fields vand b are represented in the form [1,20]

&

=8¢+
o sxp} )

where; 5¢=Vx(Vx k¢),sq)=Vx ko
8h =V x(Vx kh)and g =V x kg

The boundary conditions for free surfaces can be expressed [4] in the form
$=026=0,0=0=3,5=0 at z=i—21— 6)

s

And the boundary conditions for rigid surfacés can be expressed in the form

$=0,4=0=0=0,=0 | @)
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Operating with & ande on (1) {see [3]) and rewriting as the following system for the
unknown scalar fields ¢,9,6, h and g; and using these representations in the basic
equations we get

2(V*V,8)+5(V.VY)

=V'A$-4,0-2Q 5,A9+00,(V'ah)  (®)
8, V2 A, +V?e.(v.VY)
= V48,0 +2Q0,V% 0,6 +Q3,VA, § ©)

2
P(é—teu.ve] =V?8-RA4,¢ (10)

SV A,®+ VA, h=0
0,0 +VA, 9=0

where; A, =%, + ..

Hence the equations of motion take the following form using (11) we get:

8,(V22,0)+5.[(50+20). V(50 +20)]
=V4A,0-A,0-200,0,0~Q02As0 (12)

0V, +V75.[(8 +£0). V(50 +50)]
=V*8,0+200,V* A6~ Q34,0 (13)

P(g—? +(54+&p). Ve) =V'8-RA,¢ (14)
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2.2 The Steady State Problem

Assuming the functions ¢,¢ and 6 depend only on z and x. | assuming also that

A>>x such that all terms multiplied by —% can be neglected. We find that the general

solution which satisfies the stress-free boundary conditions by applying steady

solution due to Galerkin's method [10] has the form

0= a,,0mu = 2 anm COS M aX sin nn(z+—21-) (15a)
n,m n,m

0= bm®um = 2 by, €Os m ax cos (n— I)ﬁ(z+—l-) (15b)
n,m n,m 2 )

0=3¢,n0m = 2 Cpypn €OS M X SIN mt(z+%) (15¢)

Also the rigid boundary conditions [5,11);

6= 2, b= 2 8, g, (2); (16a)

9= 0@ = 2.b,.£""1,(2); _ . (16b)
nm am

9 = Z cnmemn = Z cl“neimaxg" (Z); (1 GC)
nm n,m -
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Where the functions g, (z) and £, (z) are represented as follows

g“(z)=sinn7r(z+—;—) (17)

[ sinh ynz  sin unz
sinthun/2 sinun/2

=s,(z) odd n

f (z)= 18)
(2) cosh Anz _ cos Anz _ @) even n (
,.coshlnlz cosAn/2 "
Where A andu,(n = 1,2,3,...) are the positive roots of the equations
tanh (A1/2) + tan (A/2)=0 (19) -
coth (u/2)-cot(u/2)=0 (20)

When defined in this manner, the functions ¢,(z) and 5 (z) have the properties
1 ' v o
s (@) €y Dz = [ 54(2) 5, (D)dz=8,, (21)

Where, 3, is the Kronecker delta

nm

The substitution of ¢,pand 8 from equation (15) and (16) into the system of
equations of steady motion (12-14) in the case stress-free and rigid boundary

respectively, the partial differential equations reduce to a system of nonlinear
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Algebraic equations.. Employing the orthogonality of the trigonometric functions

O pme @y and 0, over the interval -1/2<Z<1/2, the following system of equations is
Obtained which allov. the determination of the coefficients a, . b, andc

[7,9,12,21] in the form

i ¢: 3) 4y _
Z Aym ay Iﬁm)lrskl +a‘nm1}m)\rs +Cnm1:m)1rs +anm Igmzrs =0 (223)
n,m
5) 6) V)
Z A bkl IS\mrskl +bnmI$|mrs -Q 4mm Ignzrs = (22b)
n,m
3 9) 10y _
Z P Aam S Ifixr)uskl 'c’nmIE;mrs + Ranm Igmzs =0 ) (22C)

n,n

In order to compute the unknown coefficients a . b,, and ¢, itis necessary to

truncate the representation (18) at a sufficiently high level. Hence, choosing a

truncation parameter N such that all coefficients with’ ntm>N are negligible.

Assuming that the truncation parameter N is an even integer we have —;—N(N+1)

. 1
equations to be solved. Starting with a guessed solution, we use a EN(NH)

dimensional Newton-Raphson iteration procedure to obtain the solution {15,19]. The
satisfactory approximation is reached if it differs by a sufficiently small amount from

the solution obtained with N+2 instead of N terms. The summation convention have

been applied to (15) or (16). The calculation of the matrices 1™ from the terms
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Given in (22) are straightforward. Using angular brackets to indicate an average

over the fluid layer, we can write

10 = (015 5 (50 +50). V(56 +20))).

2.3 The Stability Problem

We can superimpose infinitesimal disturbances in the case of stress-free of

the form [6,14, 22]

=3 Ay <l> Z m £ Exp [i(ma+d)x+i by +ct] (23)
n,m .

=2 b, 2 bim £ Bxp [i(ma+d)x+i by +ot] (24)
n,m

0=3 T 0 -3 T gff) Exp [i(mot +d)x +i by +ot] (25)
nm n m )

Where; g, (z) = sin(nn (z+ -é—))

g‘,;(z)=cosc(n—1)vr<z+§~» :

Taking the rigid boundary in the form

Z : Z Enm 5.,.., - Z ’é’nmeiMmrg“ (Z) eli(bx+dy)+a] (26)
¢= Z Snm 6”", = z Eme‘""”‘ £.(2) glitbr+dy)ot] 27)
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6= Enm 6nm = Z Eﬂlneiqu gn(z) e[l(bX‘dy)-‘Gt] | (28)
n,m n,m

Since §,§ and 6 satisfy the same boundéry conditions as ¢,¢, and 8 (6) and (7)
respe;:tively in each case. The equations for the ﬁeldi {5,?;5,5} of infinitesimal
disturbancés are obtained by replacing ¢,¢ and e’in (8-10) by

@+¢,9+¢ and 0 +0) respectively. And subtracting the equations for the steady
solution {$,p,0} i.e. (12-14) we get

B,(V2A,3)+5.1(56 + 5 0).V(3} + &)
+(58+55).V(5 + £ 0)] |
=V'A6-8,8-20Q0,4,3-Q3;4,% (29)

B, V2A,5+V2e[(50 + £ ). V(8 + £ @)
+HB8 ¢+ £5).V(E ¢ + £9)] _
= V10,5 +2 Q3,V A4 - Q3455 (30)

o0 g
P (—5{ +(5p + sw).VQ +(58 +25) Ve)
=V§-RA,$ (31)
2.4 Eigen Value Problems:

The variables ¢, and 8 are satisfied by same boundary conditions (6) and

(7) in each case. From (29-31) we have, substitution of the expansions (23-25) and

211



S.A. El-kholy

(26-28) into (29-31) leads tp the equations for the unknowns a,., b,, and ¢,
[2,6). When the same procedure as in the steady problem is usixd i.e. (as in the
Case of the steady problem, a system of algebraic equalicns is obtained by
multiplying equations (29-31) by (¢, Prs and 0,) Exp[-i(dx+by)-o t] respectively
and averaging it over the fiuid layer in each case {-1/2<z :£1/2} the resulting by
using [9,21] are linear homogeneous equations representing an eigen values
problem with eigen values ¢ ‘

pe 1 _ = (2 _§F% (13 L x 04
O Ay If\mzs - "'amnI nmrs bnmInmls + cnmI nmrs

- 'anml Enln??s - Qa‘nmI S\!x?x?s (3 2)

g 17 = (18) I 19)
G bnmI Smu)'s = '—anmlnmrs - bnmlﬁmrs
— 20) g 21
+Q anmIS\mrs - Q bnmI(anS (33)
o 10D w13 w128 L% p(25
oP CnmlglmZS = _p(cnmlfxmgs + anmInmr)s + bnmlglmr)s
~ 26, ~ (27 .
+ CnmIgmr)s - RanmI nmr)s (3 4)

Where; 102 =5 < ¢, V2A, 5 >

180, =§axk <Oy 8.8 0.V Sy +8 .V 30y ) >

+ by <6,0.(60.V 88, +6¢,,-V Sy ) >
+<¢, VA, O >
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(10-12) is a system of linear homogeneous equations representing an eigenvalues
problem with the eigenvalues o. The same truncation parameter N is used for the
disturbance repsasentation (32-34) as for the steady solution. Usuaty the
eigenvalues ¢ depends smoothiy on the parameters of the problem and accurate
results can be obtained by interpolation from a‘fairly computed eigenvalues 6. In
order to apply the usual algebraic eigenvalues methods, the indices n and m,rand s

had to be combined to form a single running subscript. in addition the coefficients

F e Do 2nd €, Were combined sequentially to form a single variable. The analysis

of the eigenvalues problem (32-34) is further simplified by noticing that it separates
into fou;;i subsystems. )

(1) The equaﬁons with even n + m. coefficients

(2) The equations with odd n + m. coefficients

(3) In each case the symmetry of the steady solution with respect to the x direction

allows a further separation into solutions which are either (i) symmetric or (ii) anti-
symmetric in x. It should be noted that in all cases the coefficients b, have the

opposite symmetry properties to the coefficients @, and T . Inthe following, all

references to symmetry properties will be,ni"éde with respect to the iatter coefficients.
The primary objective of the analysis of problem (32-34) is to determinec asa
function of o, P and the Rayleigh number R at which the real part of the eigenvalues

o with largest real part vanishes.” The corresponding eigenvector describes the
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Disturbance leading to instability of the steady solution when the Rayleigh number
passes through the marginal value. Even though system (32-34) has béen
separated into four subsystems the amount of computation for the determination of
stability boundaries is still substantial because of the large number of parameters
involved. For tﬁis reason only a few representative cases will be investigated.
Fortunately the dependence of the eigenvalues ¢ on various parameters is smoath
and interpolation formulae can be used successfully to reduce the cost of
computation [6]. The infinitesimal transformation of the steacy vortex solution at ¢
=g$/ox the eigenvalues o should equal zero. The details of the dependence of the
eigenvalues ¢ on wave value b are complicated by the fact that imaginary part
vanishes for sufficiently small values of b. {14].
2.5 The Steady Solution

Most of the numerical computations of two-dimensional convection published
in the literature have been carried out without consideration of the stability of the
solution. Thus in many cases solution has been obtained for values of the
pérameters for which the two-dimensional solution is physical!y'not realizable. This
is particmarly true in the caseA of rotati'ng fayer, in each case the stability domain of
convection rolls is much smaller than in the non-rotating case. The heat transfer is
usually represented in terms 'b'y the Nusselt number which describes the ratio
between the heat transfer with convection and what it would be without-convection at

- a given Rayleigh number.
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In describing the numerical results for steady c:onvection rolls we shall
concentrate on the conveétive heat transfer, which not only is the parameter of
primary physical interest, but also appears to characterize-best the other aspects of
convection as viscous dissipation occurs at the same as the convection heat
transfer. A number of numerical studies of convection rolls have yielded results for
the Nusselt number [17]. #

Nu= ]+ <v.k®>/R (35)

3. RESULTS:

Fig.(1) shows a relation between the Nusselt number Nu and reduced Rayleigh
(R/Rc) for water at a=ac with different boundary conditions. The onset of
instability of convection occurs at the critical Rayleigh Rc with Nu=1. This figure is
for an electric fluid with critical wave numbef a.c=2.2 and no external fields. In the
Case of stress-free boundary, we note tha;t the convection increases faster than for
the rigid boundary case. This figure illustrates the effect of prese'nc’:e'of' rigid
boundary on the heat transfer. It is clear that the rigid wall inhibits.the convection
heat transport. Note that S stands for stress-free and R stands for rigid boundary.
Fig. (2) shows the real part of the eigenvalues cas a function of the Rayleigh
number. The objective of this figure is to determine the critical Rayléigh number Rii

by intersecting the line of zero o with these curves. it is obvious that with the

existence of the magnetic field, Q=100 that RIl is proportional to rotation for all
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Cases. it could be con'cluded that increasiihg the rotation increases RIl. Moreover it
can also be observed that the two curves for rigid boundary case have different
slopes while those with stress-free surface have the same slop.

Fig. (3) shows the dependence of the wave number {a) on the Rayleigh
number R in the Ibwest mode for both cases of boundary conditions. The minimum
At a finite value ac reflects the property that narrow convection cells corresponding
to high values of « are ineffective because of the strong heat exchange between up
and down going fluid. For very Iarge-sc:jale motions the vertical comparison to
horizontal component and the release of potential energy is less efficient. The letter
effect compensated by a decrease of thermal dissipation in the case of thermally
insulating boundaries. The critical wave number oc indicates that the horizontal
extent of the circulation motion comparabie with the depth of the: layer. In the stress-

free case is less restricting boundary the horizontal extend is somewhat larger.

4. CONCLUSIONS

The study of the convection in an électric conducting viscous fluid under the
influence of rotation and magnetic field was investigated.

Two kinds of boundary conditions were used (1) stress-free boundary, (2)
rigid boundary. The basic equations for continuity, momentum, energy, and
magnetic induction were written along with the auxiliary relations. Boussinesq
approximation [5] was used. The basic equations were solvec by Galérkin spectral v

[10] method and Newton's method [8). Fof each case of the boundary condition the
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Steady state solution was obtained first, then the stability was investigated. The

ériticai boundary stability region was determined.

Steady Solution:

«1-The Coriolis force appears to have a coﬁstraining effect on steady convection by
delaying the onset of convection.

2-The Lorentz force appears to have a constraining effect on steady convection by
delaying the onset of convection.

3-Both forces (Lorentz force and Coriolis force) accelerate the onset of instability
for steady convection.

4-In the case of rigid boundary we need a greater angular velocity Q than in case

of Stress-free boundary to get the same gﬁect on steady convection.

Stability Problem:

The effect of the magnetic field on the stability is contradicted with influence
of the Rotation on the stability while the incujeasing of the rotation leads to instability;
it is contradicted with the influence of the magnetic field. The convection is
insatiable
When the Rayleigh number increases beyond critical value. The steady solution of
the small amplitude is considered insatiable with increase of the rotation rate.-

The wave number remains constarit in spite of the increase of the Rayleigh
number. The dependence of the stability properties of corvection rolls on the

magnetic field strength are in marked contrast to the dependence of the stability on
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the rotation rate in a layer rotating about a vertical axis. While the regions of stable
rolls is strongly reduced with increasing rotation rate and finally vanishes at the
Critical value of the angular velocity, the oppaosite influence of the magnetic field is
found. The mathematical origin of this contrasting behavicr has already been
discussed in (se§.2.2). The absence of vertical vorticity of steady convection roils in
the presence of a magnetic field is the basic physical reason for the difference in the
Otherwise rather similar influences of magnetic field and rotation. The most
surprising result of the present analysis is the phenomenor that convection rolis
setting in at the critical Rayleigh number becomes unstable as soon as the Rayleigh
number increases beyond the critical value. The steady solution with small
-amplitude is unstable when the rotation rate is sufficiently large. The value of the
parameter o for the most stable solution remains essentially constant with increasing
Rayleigh number. Like the'stationary solution with maximum h2at transfer, however
less pronounced, the most stable solution has a slightly increasing wave number o.
* About the convictions with rotation; the rotation decreases the rate of the convection,
Rigid boundary needs strong rotation to effect the convection rore than Stress-free
problem. In both cases Rigid and free surfaces for Q=100 appear a constrair;ing
effect on stability convection delay of the onset of instability with increasing angular
velocity Q.
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