| Hansoura |
| :--- | :---: | :---: |
| Jniversity |$|$| Computer Engineering and Control Syst. Dept. |
| :---: |
| Total Marks: 90 Marks |

Curse Titie: Computer-based Control (1)

)ate: 22 May. 2014
Allowed time: 3 hr .
Faculty of Engineering

Remarks: (Answer the following questions... assume any missing data)

Duestion-1 (65 Marks)

The program written below used to copy he clata block outlined in rectangle to the rext column. Choose the best to complete he program

1. What is the function of the line labeled number 1 in the code
A. The definition of
B. Storage size of
C. Start of data section
D. all variables variables

2. The missing item labeled number 2 is
$\begin{array}{ll}\text { A. seg } & \text { B. reg }\end{array}$
e missing item labeled number 3
A. 16 H
B. 10 H
C. 8 H
D. 7 H
C. far
D. near
3. The missing item labeled number 4
A. 3000 H
B. $[3000 \mathrm{H}]$
C. BX
D. $[\mathrm{BX}]$
4. The missing item labeled number 5
A. 30001
B. [3000]
C. $[\mathrm{BX}+1 \mathrm{H}]$
D. $[\mathrm{BX}+10 \mathrm{H}]$
5. The line missed in 6 is
A. INC BX, IH
B. $1 \mathrm{NC} \mathrm{BX}, 10 \mathrm{H}$
C. $\mathrm{ADD} \mathrm{BX}, 10 \mathrm{H}$
D. $\mathrm{ADD} \mathrm{BX}, 1 \mathrm{H}$
6. The missing item labeled number 7
A. AX
B. BX
C. CX
D. None
7. for this program, the memory assigned to code segment and data segment are
A. 64 Mbyte, 64 Mbyte
B. 64 Kbyte, 64 Mbyte
C. $64 \mathrm{Kbyte}, 64 \mathrm{Kbyte}$
D. 64 Byte, 64 Byte
8. For this code (MOV AX, A NEGAX ADD AX,5 MOV A,AX), it is equivalent to
A. $B=-A$
B. $B=2^{*} A+9$
C. $B=5-B$
D. $A=5-A$

For the code (MOV CL, C4
ADD CL, A8), After execution
10. CF: carry flag is
A. 1
B. 0
11. ZF: zero flag is
A. 1
B. 0
12. SF: sign flag is
A. 1
B. 0
13. OF: Overflow flag is
A. 1
B. 0
14. PF: parity flag is
A. 1
B. 0
15. AF: auxiliary flag is

$$
\text { A. } 1
$$

16. The SP register is typically used for accessing
A. strings
B. memory
B. 0
C. ..ack
D. data segment
17. if the physical address of ?:14DAH is 23510 AH what the value of the base address?
A. 2110
B. 2210
C. 1022
D. 1220
18. To retrieve data from the stack we use
A. pop
B. push
C. STO
D. SAV
19. When we pushing data to stack, we always write the low byte of the stored value at the value of
A. SP
B. SP-2
C. SP-1
D. $\mathrm{SP}+2$
20. A data segment is to be located from address A0000 to AFFFF. What value must be loaded into DS?
A. 000 A
B. AFFF
C. FFFA
D. A000
21. a dump command that will display the contents of the first 16 bytes of the current code segment is
A. $\mathrm{des}: 16$
B. e cs:0000 16
C. d cs:0000 000f
D. $\mathrm{dcs}: 000016$
22. The instruction MOV [DI], DX belongs to \qquad addressing mode
A. register
B. based-relative
C. Base-Plus-Index
D. indirect
23. the instruction $\mathrm{ADD} \mathbf{A X},[\mathrm{BX}+\mathrm{S} I]$ belongs to \qquad addressing mode
A. register
B. based-relative
C. Base-Plus-Index
D. indirect
24. in the command above, the two bytes memory contents at physical address --....-- will be copied to $A X$
A. $\mathrm{CS}: \mathrm{BX}+\mathrm{SI}$
B. $\mathrm{DS}: \mathrm{BX}+\mathrm{SI}$
C. DS:BX-SI
D. $\mathrm{CS}: \mathrm{BX}-\mathrm{SI}$
25. To define variable named cost as byte-sized in TASM with unknown value we use
A. Cost DB ?
B. DB Cost?
C. DB Cost $=$
D. $D W \operatorname{Cost}=$
26. To add line feed to your program output, you will write MOV AH, 02 , INT 21, and put in DL \qquad
A. 0dh
B. odb
C. Oah
D. 0 af
27. .o write "I ENJOYED THE MICROPROCESSOR COURSE" at DS:0100, you will write
A. E 0100 ""
B. D 0100 " "
C. G 0100 " "
D. T 0100 ""
28. PUSH CS
A. Wrong
B. Right
29. POP CS
A. Wrong
B. Right
30. All of these can be used as an option to .model except
A. compact
B. Moderate
C. large
D. small
31. the operating system need the entry point to the main program to be \qquad
A. NEAR
B. FAR
C. BOTH
D. NONE

Given that: $\quad \mathrm{DS}=7600 \mathrm{H}, \quad \mathrm{SS}=6400 \mathrm{H}, \mathrm{BX}=7892 \mathrm{H}, \quad \mathrm{BP}=1 \mathrm{AF} 3 \mathrm{H}, \quad$ and $\mathrm{DI}=4572 \mathrm{H}$
32. MOV DX, $[B X]$, the memory content that will be written to $D X$ has the logical address
A. $6400: 1 \mathrm{AF} 3$
B. $7600: 7892$
C. 7892:7600
D. $1 \mathrm{AF} 3: 6400$
33. MOV BL, $[B P]$, the memory content that will be written to $B L$ has the logical address
A. 6400:1AF3
B. $7600: 7892$
C. 7892: 7600
D. 1AF3: 6400
34. To get the negative of a number stored in DX , you will write .-.-.-.--
A. NEG DX
B. NOT DX
C. $\mathrm{XOR} \mathrm{DX}, 8000 \mathrm{~h}$
D. all
3. So get a character from the keyboard, call INT 21 H , and put in AH \qquad
A. 01 H
B. 02 H
C. 09 H
D. 21 H

Regarding TASM: For the code shown next
36. Given that $\mathrm{NUMB}=16$ (Decimal value), the program sequence will jump to
A. Block 1
B. Block2
37. Given that $\mathrm{NUMB}=17$ (Decimal value), the program sequence will jump to
A. Block 1
B. Block2
38. Given that $\mathrm{NUMB}=18$ (Decimal value), the program sequence will jump to
A. Block 1
B. Block2
39. To mask off all but bit 7 of the contents of the data register
A. XOR DX,0080
B. OR DX, 8000
C. AND DX,0080h
D. AND DX, 8000
40. To set all bits of an operand to 1 , it could be ORed with
A. FF
B. 80
C. F0
D. 08
41. The TEST instructions works by performing a $-\cdots-\cdots-\cdots-\cdots-\cdots-\ldots$ operand on the operands and setting the flags
A. OR
B. XOR
C. NOT
D. AND
42. The relation between the old and new contents of $A X$ after executing $N O T A X \rightarrow A D D A X, \mathbb{A}$ is
A. $A X=$ NOT $A X$
B. $A X=A X-1$
C. $\mathrm{AX}=-\mathrm{AX}$
D. None
43. If $A X=0700 \mathrm{H}$, what will be the content of $D X$ after executing the $C W D$
A. 0000 h
B. 070 Dh
C. FFFFh
D. No change
44. If $\mathrm{AX}=070 \mathrm{Dh}$, what will be the content of AX after executing the CWD
A. 0000 h
B. 070 Dh
C. FFFFh
D. 070 Ch
45. If $B X=01 A 2 h$, what will be the content of $B X$ after executing $N E G B X$
A. FE5Dh
B. FE5Eh
C. 5EFEh
D. No change
46. If $\mathrm{AX}=0005 \mathrm{~h}, \mathrm{BX}=0002 \mathrm{~h}$, what will be the content of AX after executing $\mathbb{M O L} \mathbb{B X}$
A. 0010 h
B. 000 Ah
C. 0000 h
D. No change
47. If $\mathbf{A X}=? ? 05 \mathrm{~h}$, factor $=\mathbf{F F h}$, what will be the content of AX after executing MOL factor
A. FFFBh
B. FB04h
C. 04 FBh
D. 0000 h
48. If $\mathrm{AX}=$? ? 05 h , factor $=\mathbf{F F h}$, what will be the content of AX after executing MMUL factor
A. FFFBh
B. FB04h
C. 04 FBh
D. 0000 h
49. If $\mathrm{AX}=0064 \mathrm{~h}$, divisor $=0 \mathrm{DH}$ h, what will be the content of AX after executing DIV divisor
A. Fl23h
B. 0907 h
C. 0064 h
D. 0000 h
50. If $D X=0000 \mathrm{~h}, \mathrm{AX}=0064 \mathrm{~h}, \mathrm{CX}=\mathrm{FFF} 3$, what will be the content of AX after executing IDIV CX
A. 0009 h
B. 0900 h
C. FFF9h
D. $\mathrm{F9FFh}$
51. If $D X=0000 \mathrm{~h}, \mathrm{AX}=0064 \mathrm{~h}, \mathrm{CX}=\mathrm{FFF}$, what will be the content of DX after executing IDIV CX
A. 0009h
B. 0900 h
C. FFF9h
D. F9FFh

During working with DEBUG, we have the print out shown above
52. What is the value written in the section pointed to by the arrow?
A. Flags
B. Logical address
C. Segment register
D. Machine code
53. What is the size of this file?
A. 23 bytes
B. 141 A bytes
C. 142 C bytes
D. SI bytes
54. The flag section shows that there is --------- happened
A. negative
B. carry
C. parity even
D. no auxiliary carry
55. the next instruction that will be executed has the machine code -
A. 000000
B. 141 A
C. one cannot know
D. B 82 C 14
56. The memory content of 142A:0000 to the next 2 bytes is
A. 000000
B. 141 A
C. one cannot know
D. B 82 C 14

The original contents of AX, BL, word-size memory location SUM, and carry flag (CF) are $1234 \mathrm{~h}, \mathrm{ABh}, 00 \mathrm{CDh}$, and 0 h , respectively. Describe the results of executing the following sequence of instructions:
ADD AX, [SUM]
$\mathrm{ADC} \mathrm{BL}_{1}, 05 \mathrm{H}$
INC WORD PTR [SUM]
57. $A X=$ \qquad
A. 1234 h
B. 1301 h
C. OIFE
D. CCl 2
58. $\mathrm{BL}=$

- .-...........
B. BOh
C. 1 Fh
D. B8

59. $\mathrm{SUM}=$
A. 1234 h
B. 00 CEh
C. C6FE
D. 5050
60. The mnemonics for adding to the accumulator the contents of memory location with offset address 0025
A. $\mathrm{ADD} \mathrm{AX},[0025 \mathrm{H}]$
B. INC [0025]
C. $\mathrm{ADD} \mathrm{AX}, 0025 \mathrm{H}$
D. INC 0025 H
61. If $\mathrm{AX}=7 \mathrm{fffH}, \mathrm{BX}=8000$, and the code $\mathrm{CMP} \mathrm{AX}, \mathbb{B X}$ JA below is executed, the program transfer to label below
A. RIGHT
B. WRONG
62. The code MOV CL,NUMMR

BT CL, 1 can be used to
A. Test the LSB of
B. check odd or even
C. Both A and B
D. NONE NUMB
63. The output of BTR CL, 4 will be saved in
A. Cl
B. 2 F
C. CH
D. CF
64. when executed will mask off all but bit 7 of the contents of the data register
A. AND DX,0080
B. $\mathrm{XOR} \mathrm{DX}, 0080$
C. OR DX,0080
D. BT DX, 0080
65. Write an instruction that will subtract the word contents of the storage location pointed to by the base register BX and the carry flag from the accumulator
A. $\mathrm{SBB} \mathrm{AX},[\mathrm{BX}]$
B. $\operatorname{SUB} A X,[B X]$
C. $\operatorname{SUB} A X, B X$
D. DEC AX, $[B X]$

* A. Write a program in assembly code to count the characters in a line
B. Write the core of assembly program to read in characters that end with blank "space" character

\mathbf{Q}	A	B	C	D
1.	0	0	0	0
2.	0	0	0	0
3.	0	0	0	0
4.	0	0	0	0
5.	0	0	0	0
6.	0	0	0	0
7.	0	0	0	0
8.	0	0	0	0
9.	0	0	0	0
10.	0	0	0	0
11.	0	0	0	0
12.	0	0	0	0
13.	0	0	0	0
14.	0	0	0	0
15.	0	0	0	0
16.	0	0	0	0
17.	0	0	0	0
18.	0	0	0	0
19.	0	0	0	0
20.	0	0	0	0

	A	B	C	
21.	0	0	0	O
22.	O	-	O	O
23.	O	O	O	O
24.	O	O	O	O
25.	,	O	O	-
26.	O	O	O	O
27.	O	-	O	-
28.	O	O	O	-
29.	O	O	0	O
30.	O	O	O	O
	O	0	0	O
	0	0	0	0
33.	0	O	O	0
34.	O	-	0	O
35.	0	O	O	O
36.	O	-	O	-
	0	O	O	O
38.	0	O	O	0
	O	O	0	0
	0	0	0	

	A	B		
41.	\bigcirc	O	-	O
	O	O	O	
	O	O	-	
	O	O	O	
	O	O	-	
	O	a		
47.	O	O	0	
	0	-		
49.	O	O	O	-
	O	O		
	O	0	O	
	0	O	O	
	O	-		
	O	O	O	
	-	-	O	
	-	-	O	
	-	O	O	
	\bigcirc	-	O	
	\bigcirc	O	0	
	-	0	-	
	\bigcirc	\bigcirc	-	
	\bigcirc	-	O	
		O	O	
	0		O	
	\bigcirc	\bigcirc	O	

Best wishes
Dr. Mostafa A. Elhosseinti

