مترولوج) لم

Menoufiya University Faculty of Engineering Dept. Production Engineering Final Exam (2013-14) - 2nd Term Date: June 1, 2014

Metallurgy and Engineering Materials Code: PRE 222 Time: 3 hrs. Total Marks: 90 Marks

Solve the following questions:

(15 marks)

Question no. 1 (Choose the correct answer)		(15 marks)					
1. Metallic bonding is considered the weakest form of bonding	(True)	or	(False)				
2. Body Centered Cubic (BCC) has the lowest atomic packing factor	(True)	or	(False)				
3. Some metals as well as nonmetals have more than one crystal structure, a phen	omenon	knov	wn as				
Amorphous	(True)	or	(False)				
4. Amorphous is a phenomenon in which measured properties are independent of	the direc	tion	n of				
measurement	(True)	or	(False)				
5. A sheet of polycrystalline steel produced by rolling is likely to exhibit anisotropy?	(True)	or	(False)				
6. Ionic bonds are formed by the transfer of one or more electrons from an electropositive atom to an							
electronegative one	(True)	or	(False)				
7. The distance between the atoms (interatomic distance) in crystal structure can be	e detern	inec	d				
experimentally by X-ray diffraction analysis.	(True)	or	(False)				
8. In Covalent bonding, the outer valence electrons of the atoms are shared by ma	ny surro	undi	ng atoms,				
and so in general, Covalent bonding in nondirectional.	(True)	or	(False)				
9. Glass is considered a true solid materials because it has a noncrystalline structure	(True)	or ((False)				
10. Fallgue failure is a form of failure that occurs in structures subjected to dynam	(Tand f	uctu	ating				
Suresses.	(Irue)	or	(False)				
for essentially an infinite number of evaluation	at will n	01 C2	(Telse)				
12. Toughness is a measure of the ability of a material to shooth energy up to freeture	(True)	OF	(False)				
12. Toughtess is a measure of the degree of elastic deformation that has been sustai	(Irue)		(raise)				
13. Ductinity is a measure of the degree of elastic deformation that has been sustai	(True)	or	(False)				
14 In stress-strain curve deformation in which stress and strain are linearly property	(Irue)		(raise)				
deformation		or	(False)				
15. Creep failure represents the mode of failure in which the material fails under t	he effect	ofs	tatic				
loading	(True)	or	(False)				
	()		(

Question no. 2

(15 marks)

(15 marks)

- a) Draw the following planes and directions; (121), (021), $(\overline{1}0\overline{1})$, [121], [021], $[\overline{1}0\overline{1}]$
- b) Drive planner density expressions for BCC (100) and (110) planes in terms of atomic radius R and compute and compare the planner density values for these same two planes for iron where, R=0.124 nm.
- c) Aluminum is FCC, has a lattice parameter, a, of 0.4049 nm. Calculate the following interplanar spacing:

1) c	<i>l</i> ₁₁₀	b) d_{111}	c)	d	220
		· +++			_

Question no. 3

- a) Explain briefly the types of point defects in crystal structural?
- b) Cite the differences between edge and screw dislocations?
- c) Cite the difference between ductile fracture and brittle facture? Write shortly the factors that may transfer brittle fracture to ductile facture.
- d) A tensile stress is to be applied along the long axis of a cylindrical brass rod that has a diameter of 10 mm. Determine the magnitude of the load required to produce a 2.5x10⁻³ mm change in diameter if the deformation is entirely elastic. Take the modulus of elasticity, E=97 GPa.

(1)

(15 marks) a) Calculate the critical radius (in centimeters) of a homogeneous nucleus that forms when pure liquid Assume under cooling = 0.2 (melting point). copper solidifies. Calculate the number of atoms in this critical-sized nucleus at this undercooling. (Melting point of Cu 1083 °C, surface force energy 177x10⁻⁷ J/cm², latent heat of solidification = -1826 J/cm^3 , and lattice parameter = 0.361 nm). - Draw the time-temperature cooling paths for 1080 Steel on TTT that will produce the following (Start with the Steels in the Austenitic condition at time = 0 and 880 °C.) microstructure: iii) 50% M + 50% upper B, and iv) 100% lower B. ii) 50%M + 50% Coarser P. (15 marks) application: • Composite Metal Alloy • Thermoset polymer • Shape memory alloy • Self-healing polymer • Duralumin • Superalloy Tempered glass • Biomaterial b) Platinum (Pt) melts at 1800 °C and Silver (Ag) melts at 960 °C. At 1185 °C, the following reaction $\alpha_{10\%Ag} + L_{66\%Ag} \iff \beta_{42\%Ag}$ takes place: - Draw to scale the Pt-Ag phase diagram. - For an alloy 40% Pt; • Make phase analysis at $1185\pm\Delta T$. • Draw the cooling curve from 1600 °C to 400 °C. - Calculate wt.% proeutectoid Cementite. - Calculate wt.% eutectoid Cementite off Newfoundland in less than 3 hrs with a loss of over 1500 people. catastrophic failure? = GOOD LOOK ==

b) Solid solution hardening a) Work hardening c) Precipitation hardening d) Grain size hardening, (Quoting instances in which each method is used in engineering practice).

2) Compare between:

Question no. 4

- Graphite and Graphene
- Brass and Bronze
- Hardness and Hardenability
- Austempering and Martempering

1) Explain the meaning and the processes involved in:

Question no. 5

b) - Describe the steps for constructing TTT diagram of 1080 Steel.

i) 100% M,

Question no. 6

a) Define the following engineering materials giving an example of each as well as the appropriate

At 400 °C, the solid solubility of α and β are 2% Ag and 90% Ag, respectively.

- c) A 0.9% C steel is slowly cooled from 900 °C to a temperature just slightly below 723 °C.
- d) In April 1912, the Royal Mail Ship "Titanic" struck an iceberg while steaming at 20 t knots and sank
- What, in your opinion and from an engineering point of view, are the several reasons for this

This exam measures the following ILOs **Question** Number Q1,Q6-a Q4,Q3-a,b,c Q2, Q6-d Q3-d, Q6-d Q5 Q3-d, Q5-b These skills are measured Q6 else where Skills a3-1 a19-1 b3-1 b6-1 b13-1 c1-1 c17-1 d1-1 Knowledge & Understanding Intellectual Skills **Professional Skills** General skills

(15 marks)

d9-1

Eutectic and Eutectoid

White C.I and Nodular C.I

Carburizing and Nitriding