ML-MANSOURA UNTVERSTTY
 FACULITY OF BNGINEERNG

DYNAMIC OF STRUCTURES

8/9/2013
Question 1: $20(5+4+11)$ points

1) Write the equation of motion for nonlinear single degree of freedom system, showing the mathematical model and free body diagram. Give a sleatch for nonlinear stiffness an damping. 2) Write breilly about linear acceleration step by step method and elastoplastic behaviour.
2) For the single degree of freedom frame shown in Fig.(1-1) with elastpolastic behaviour shown in Fig. (1-2), ftad the nonlinear response using linear acceleration method at times $t=0.1,0.2$, $0.3,0.4,0.5,0.6,0.7$ seconda for the loading system shown in FIG.(1-3).

7g. (1-3)

Question 2: $10(5+5)$ points

1) For random funotion $x(t)$, write about statistical properties of the fluctuating velocity component of wind.
2)A 100 m tall mast, whose first and second frequencies are $1.5 \mathrm{~Hz}, 2.5 \mathrm{~Hz}$, respectively ts subjected to a mean whind speed of $30 \mathrm{~m} / \mathrm{s}$, at 10 m above ground level. Compute the values of the spectral cienaity functions corresponding to the two first frequencies at $25 \mathrm{~m}, 50 \mathrm{~m}$, 75 mz, and 100 m aloug the mast height, considering the roughness length $=0.3 \mathrm{~m}$.

Question 8: s0(15+16) poinis

part(1) $\frac{15}{5}$ points:
Fig. (z-气) Mathernaticol model
For Fig. $(2-1)$ and (2 $2-2$:
 $F L(t)=5 t, F 2(t)=10 t$, and $F 3(t)=15 t$

The three sraqueneien aro $11.514,27.186$, and $51.874 \mathrm{rad} / \mathrm{s}$.
5) Fixd the equation of moticus.
in) compute the meximum displacements yimax, y2mam,

(ili) write the camping matrix, considering the absolute demapiag coeffictents for the finst three moces are

$$
\begin{array}{r}
1.0 \\
=1.0
\end{array}
$$ $6 \%, 10 \%$ and 15% reapsetively.

part(2): 15 points
For Fig.(2-3):
The mast shown in Fig.(2-3) supports two discs at $10,20 \mathrm{~m}$ elevation above the ground. The diameter of each disc is 4 m , and the drag coefficient $c_{d}=2.0$. The roughness length $=1.0 \mathrm{~m}$, the wind speed $=30 \mathrm{~m} / \mathrm{s}$ at 10 m , elevation above the ground level.
-Calculate the lateral response of each disk due to wind on disks only.
-Compute Kaimals power spectrum to take account of the variation of the spectral density function with height.
consider the exponential decay coefficient for the wind speed and ground roughness $C_{z}=8$ assume the damping in the first to modes is 1% and 0.5% of critical and the aerodynamic admittance factor to be 0.5 and 0.25 in first and second, respectively.

$$
\begin{aligned}
& \mathrm{m} 1=8 \mathrm{t} . \mathrm{sR} / \mathrm{m} \quad, \mathrm{~m} 2=3 \mathrm{t} . \mathrm{s} 2 / \mathrm{m} \\
& \mathrm{EI}=1000 \mathrm{t} . \mathrm{m} 2
\end{aligned}
$$

GOOD LUCK PROF. DR. ENG. Mohamed Naguib.

