SUGGESTED APPROACHES FOR
 TRANSFORMING AN INTEGER PROGRAMMING PROBLEM INTO A KNAPSACK PROBLEM

N. EL-RAMLY
Menofiya University, Shebin-El-Kom, Menofiya, Egypt.

A. EL-KASSAS

Institute of National Planning, Nasr City, Cairo, Egypt.

ABSTRACT

On transforming to a Knapsack problem, an integer program (IP) can be seen to have a particularly simple structure. This allows us to develop two approaches for transforming an IP bounded variables into a Knapsack problem in bounded variables.

1. First Approach :

Consider the integer program :
Max $c x, x \epsilon S=\{x \mid A x=b, O \leq x \leq U, x$ integer $\}, U$ is an upper bound for x where A, b, c, and x are $m \times n, m x 1,1 \times n, 1 \times n$ matrices respectively.

Our intent here is to find weights $w=\left(w_{1}, \ldots, w_{m}\right)$, such that

$$
T=\{x \mid w A x=w b, \quad O \leq x \leq U, x \text { integer }\}=S
$$

Since, T is described by one constraint

$$
\sum_{j}\left(\sum_{i} w_{i} a_{i j}\right) x_{j}=\sum_{j} a_{j} x_{j}=b_{o}=\sum_{i} w_{i} b_{i}
$$

It follows that an IP in bounded variables can be solved as an equality constraint Knapsack problem in bounded variables. We have to show that two

Suggested Approaches.

constraints can be combined into one without changing the set of feasible solutions. Then, by repeating combining the constraints two at a time, it is clear that m constraints can be combined into one.

Consider the following two constraints :

$$
\left.\begin{array}{l}
\sum_{j=1}^{n} \alpha_{j} x_{j}-b_{1}=0 \tag{1}\\
\sum_{j=1}^{n} \beta_{j} x_{j}-b_{2}=0
\end{array}\right\}
$$

and assume that the coefficients α_{j} and $\beta_{j}, \mathrm{j}=1, \ldots, \mathrm{n}$ are integers. Let

$$
\begin{aligned}
& \lambda^{+}=\max \sum_{j=1}^{n} \alpha_{j} x_{j}-b_{1}, \quad O \leq x_{j} \leq U_{j} \text { integer }, j=1, \ldots, n \\
& \lambda^{-}=\min \sum_{j=1}^{n} \alpha_{j} x_{j}-b_{1}, \quad O \leq x_{j} \leq U_{j} \text { integer }, j=1, \ldots, n
\end{aligned}
$$

Define $\alpha_{j}^{+}=\max \left\{O, \alpha_{j}\right\}$ and $\alpha_{j}^{-}=\min \left\{O, \alpha_{j}\right\}$, we have $\lambda^{+}=\sum_{j=1}^{n} \alpha_{j}^{+} U_{j}-b_{1}$ and $\lambda^{-}=\sum_{j=1}^{n} \alpha_{j}^{-} U_{j}-b_{1}$. Let $\lambda=\max \left\{\lambda^{+},|-\lambda|\right\}$

Lemma 1.1 :

The integer vector $x^{0}, O \leq x^{0} \leq U$ is a solution to (1) if and only if $\sum_{j=1}^{n}\left(\alpha_{j}+k \beta_{j}\right) x_{j}^{0}-b_{1}-k b_{2}=0$, where k is any integer satisfying $|k|>\lambda$.

2. Second Approach :

In this method, we show how to transform an IP problem (with a system of linear equations) to a single linear equation problem in the following theorem.

Lemma 2.1: (Glover[2])

Consider a system of two equations :

$$
\left.\begin{array}{l}
s_{1} \equiv \sum_{j=1}^{n} a_{1 j} x_{j}=b_{1} \tag{2}\\
s_{2} \equiv \sum_{j=1}^{n} a_{2 j} x_{j}=b_{2}
\end{array}\right\}
$$

where all coefficient $a_{i j}, b_{i}$ are integers, and at least one of b_{1} and b_{2} is not zero. Let w_{1} and w_{2} be relatively prime (nonzero) integers. If there exists at least one nomnegative integer solution to (2), then every nonnegative integer solution to

$$
\begin{equation*}
w_{1} s_{1}+w_{2} s_{2}=w_{1} b_{1}+w_{2} b_{2} \tag{3}
\end{equation*}
$$

is a nonnegative integer solution to (2), and conversely, provided that

$$
\begin{equation*}
w_{1} a_{1 j}+w_{2} a_{2 j} \geq\left|b_{2} a_{1 j}-b_{1} a_{2 j}\right| \tag{4}
\end{equation*}
$$

for $j=1, \ldots, n$ and (4) holds as a strict inequality for $j \in J$, where J is any nonempty subset of $\{1, \ldots, n\}$ such that all nonnegative solutions to (3) satisfy $x_{j}>0$ for at least one j in J .

The lemma implies that w_{1} and w_{2} be chosen so that $w_{1} b_{1}+w_{2} b_{2}>0$. Also by (4) the coefficient in (3) (i.e. $w_{1} a_{1 j}+w_{2} a_{2 j}, j=1, \ldots, r$) are nonnegative. Thus, every nonnegative integer solution to (3) must have $x_{j}>0$ for at least one j where its coefficient in (3), $w_{1} a_{1 j}+w_{2} a_{2 j}$ is positive. Consequently, the set J can consist of those j for which $w_{1} a_{1 j}+w_{2} a_{2 j}>0$.

3. Example :

Cunsider the following integer programming problem:

$$
\operatorname{Max} Z=x_{1}+x_{2}+x_{3}
$$

subject to

$$
\begin{align*}
2 x_{1}+x_{2}+x_{3}+x_{4} & =6 \tag{5}\\
x_{1}+2 x_{2}+x_{3}+x_{3} & =6 \tag{6}\\
x_{1}+x_{2}+2 x_{3}+x_{6} & =6 \tag{7}\\
x_{1}+x_{2}+x_{3}+x_{7} & =4 \tag{8}
\end{align*}
$$

Suggested Approaches.
and

$$
\begin{gathered}
x_{1} \leq 3, x_{2} \leq 3, x_{3} \leq 3, x_{4} \leq 6, x_{5} \leq 6, x_{6} \leq 6, \text { and } x_{7} \leq 4 \\
x_{j} \geq 0 \text { integers }, j=1, \ldots, 7
\end{gathered}
$$

Method 1.

First to solve our example by the first approach,
For equation (8),

$$
\left.\begin{array}{l}
\lambda^{+}=1(3)+1(3)+1(3)+1(4)-4=9 \\
\lambda^{-}=0(3)+0(3)+0(3)+0(4)-4=-4
\end{array}\right\} \Rightarrow \lambda=9 \Rightarrow k=10
$$

Combining with eq. (7) we have,

$$
\begin{gather*}
x_{1}+x_{2}+x_{3}+x_{7}+10\left(x_{1}+x_{2}+2 x_{3}+x_{6}\right)=4+6(10) \Longrightarrow \\
11 x_{1}+11 x_{2}+21 x_{3}+10 x_{6}+x_{7}=64 \tag{9}
\end{gather*}
$$

For equation (6),

$$
\lambda^{+}=12, \lambda^{-}=-6 \Longrightarrow \lambda=12 \Longrightarrow k=13
$$

Combining with eq. (9) we have,

$$
\begin{equation*}
144 x_{1}+145 x_{2}+274 x_{3}+x_{5}+130 x_{6}+13 x_{7}=838 \tag{10}
\end{equation*}
$$

For equation (5),

$$
\lambda^{+}=12, \lambda^{-}=-6 \Longrightarrow \lambda=12 \Longrightarrow k=13
$$

- Combining with eq. (10) we have,

$$
1874 x_{1}+1886 x_{2}+3563 x_{3}+x_{4}+13 x_{5}+1690 x_{6}+169 x_{7}=10900
$$

Thus the corresponding Knapsack problem is in the form,

$$
\begin{array}{cc}
\text { Max } & x_{1}+x_{2}+x_{3} \\
\text { s.t. } 1874 x_{1}+1886 x_{2}+3563 x_{3}+x_{1}+13 x_{5}+1690 x_{6}+169 x_{7}=10900
\end{array}
$$

and $x_{j} \geq 0$ and integers, $j=1, \ldots, 7$,

$$
x_{1} \leq 3, x_{2} \leq 3, x_{3} \leq 3, x_{4} \leq 6, x_{5} \leq 6, x_{6} \leq 6, \text { and } x_{7} \leq 4
$$

Method 2.

Now, our example can be solved by the second method as follows :
The initial system is :

var. Eq.	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	b
(5)	2	1	1	1	0	0	0	6
(6)	1	2	1	0	1	0	0	6
(7)	1	1	2	0	0	1	0	6
(8)	1	1	1	0	0	0	1	4

To combine equations (5) and (6), let $J=\{1, \ldots, 5\}$ and by (4) we have:

J	$\left\|b_{2} a_{1 j}-b_{1} a_{2 j}\right\|$	Equation (4)
1	6	$2 w_{1}+w_{2}>6$
2	6	$w_{1}+2 w_{2}>6$
3	0	$w_{1}+w_{2}>0$
4	6	$w_{1}>6$
5	6	$w_{2}>6$

Let $w_{1}=7$, and $w_{2}=8$, we have,

var.	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	b
Eq.								
(11)	22	23	15	7	8	0	0	90
(7)	1	1	2	0	0	1	0	6
(8)	1	1	1	0	0	0	1	4

To combine (11) and (7), let $J=\{1,2, \ldots, 6\}$ and again use (4)
we obtain:

Suggested Approaches.

J	$\left\|b_{2} a_{1 j}-b_{1} a_{2 j}\right\|$	Equation (4)
1	42	$22 w_{1}+w_{2}>42$
2	48	$23 w_{1}+w_{2}>48$
3	90	$15 w_{1}+2 w_{2}>90$
4	42	$7 w_{1}>42 \Longrightarrow w_{1}>6$
5	48	$8 w_{1}>48 \Longrightarrow w_{1}>6$
6	90	$w_{2}>90$

Taking $w_{1}=7$, and $w_{2}=91$, we have:

Eq.	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	b
(12)	245	252	287	49	56	91	0	1176
(8)	1	1	1	0	0	0	1	4

To combine (12) and (8), let $J=\{1,2, \ldots, 7\}$ and again use (4) we
obtain:

J	$\left\|b_{2} a_{1 j}-b_{1} a_{2 j}\right\|$	Equation (4)
1	196	$245 w_{1}+w_{2}>196$
2	168	$252 w_{1}+w_{2}>168$
3	28	$287 w_{1}+w_{2}>28$
4	196	$49 w_{1}>196 \Longrightarrow w_{1}>4$
5	224	$56 w_{1}>224 \Longrightarrow w_{1}>4$
6	364	$91 w_{1}>364 \Longrightarrow w_{1}>4$
7	1176	$w_{2}>1176$

Take $w_{1}=5$, and $w_{2}=1177$.

Thus the corresponding Knapsack problem is in the form,

$$
\text { Max } \quad x_{1}+x_{2}+x_{3}
$$

$$
\text { s.t. } 2402 x_{1}+3437 x_{2}+2612 x_{3}+245 x_{4}+280 x_{5}+455 x_{6}+1177 x_{7}=10588
$$

$x_{j} \geq 0$, and integers, $\mathrm{j}=1, \ldots, 7$, and

$$
x_{j} \leq 3, j=1,2,3, x_{j} \leq 6, j=4,5,6, x_{7} \leq 4
$$

4. Conclusion :

From the previous suggested two approaches, the IP may be transformed into a Knapsack problem . The deduced problem can be solved as an ordinary Knapsack problem. The transformation is worthwhile only if the deduced Knapsack problem is easier to solve than the original IP. The drowback of this approach is that, the coefficients result from the aggregation process may appear relatively large .

REFERENCES

1. Garfinkel, R.S., and G.L. Nemhauser, "Integer Programming", New York, John Wiley \& Sons, (1972).
2. Glover, F., "New Results for Reducing Linear Programs to Knapsack Problems", Management Science Report, Series 72-7, University of Colorado (1972).
3. Salkin, H.M., "Integer Programming", Addison-Wesley, (1975).

طرز هقتـرحة لتـويـل هسألة البرهـجة

Knapsack الصحيحة الى هسألة نابساك

عند تحويل مسالة البرمجة المعيحة الى مسالّة نابسـاك فإن شذا التحويل له هيكل خمـا وبسيط. وشذا يسـع لنا بإستتباط طريتتين لتحويل البرمـجة الصحيـحة ذات متغيراتمحددة.
 الصـحيــة ذات المتغيرات المحددة يمكن حلها كمسـالكالة نابسـاك بقيد واحد فمى صمدة
 مجموعة الحلل المسموح بها ـ وبتكرار دمع اللقيو اثينين اثين يتضيح أن m قيداً يمكن دمجهم جميعا" فى قيد واحد.

أُمـا الطريتة الثانية فتتبنى على تحويل مســألة البرمـجـة المــيـيــة ذات نظام معادلات خطية اللى مسالّة ذات معادللة خطية منفردة .

