Mathematics (3)

يتألف الإختبار من 4 أسئلة في ورقتين. برجاء بدء إجابة كل فرع من إحدى نهايتي ورقة الإجابة.

[1]-(a) [15 pts] Solve by any method

- 1. $(\sin x \cosh y) dx (\cos x \sinh y) dy = 0, \quad y(0) = 0,$
- $2. \quad \frac{dy}{dx} = \frac{y}{x + xy + x^2y},$
- 3. $x^2y'' 2xy' + 2y = x^3 \sin x$.
- (b) [5 pts] Find a general solution for the homogeneous differential equation with constant coefficients whose auxiliary equation is

$$(r-1)^3 (r-2) (r^2+r+1) (r^2+6r+10)^3 = 0.$$

(c) [5 pts] Find the orthogonal trajectories of

$$y^2 \left(2C - x \right) = x^3.$$

(d) [5 pts] Determine the proper form of $y_p(x)$ for

$$(D^2 - 3D) y = 6e^{3x} - 5\sin x$$

but do not solve for the undetermined coefficients.

[2]-(a) [6 pts] Find the Laplace transform of the following functions

$$f_1(t) = \begin{cases} e^t, & 0 < t < 2\pi, \\ e^t + \cos t, & t > 2\pi, \end{cases}, \quad f_2(t) = t e^{3t} \sinh(2t) \sin(4t).$$

(b) [6 pts] Find the inverse Laplace transform of

$$F_1(s) = \ln\left(\frac{s+3}{s^2+4}\right), \qquad F_2(s) = \frac{2s^2+10s}{(s^2-2s+5)(s+1)}.$$

(c) [8 pts] Evaluate

1.
$$\int_0^\infty \frac{\cos(3t) - \cos(6t)}{t} dt,$$
 2. $1 \star 1 \star 1$.

(d) [5 pts] Solve the initial value problem

$$y'' - 2y' - 8y = f(t), \quad y(0) = 1, \quad y'(0) = 0.$$

Assoc. Prof. Dr. El-Gamel

[3] (a) [6 pts] The domain of Ali's garden is describe by the domain of the function

$$f(x,y) = \sqrt{x - |y|} + \sqrt{4x - x^2 - y^2}$$

- i) Find the domain of Ali's garden and sketch
- ii) Using double integration prove that area of garden = $2\pi + 4$
- (b) [9 pts] If z, u, v are three <u>positive</u> real numbers satisfy equation $z^2u uvz + u^2 + v^2 = 8v$ where $u = (x+1)e^y$ and $v = (y+1)\cos(x)$ prove that $z_x = -1.6$ and $z_y = 0.2$ at (x = 0 and y = 0)
- (c) [8 pts] Suppose that the elevation z of a hill is given by

$$z = f(x, y) = 39 + 10x - x^2 + 12y - y^2$$

- i) It a small stone moves from site (6,8) to (9,12). Find the rate of change of elevation in that direction
- ii) Using second-order approximation, find the elevation z at point (6.01,8.02) use $[x_0 = 6 \text{ and } y_0 = 8]$
- [4] (a) [7 pts] Find $I = \int_0^1 \int_0^1 \frac{1}{1 (xy)^2} dx dy$ using transformation

$$x = \frac{\sin(u)}{\cos(v)}$$
 and $y = \frac{\sin(v)}{\cos(u)}$ (note: this transformation transform square $0 \le x \le 1$,

$$0 \le y \le 1$$
 into triangle $0 \le u \le \frac{\pi}{2} - v$, $0 \le v \le \frac{\pi}{2}$)

(b) [7 pts] Find the center of mass of the lamina for the shape inside curve $r=2-2\sin(\theta)$ shown in figure 1. If the mass density given by $\rho(x,y)=1$

- (c) [4 pts] For $\vec{F} = (x^2y) \hat{\imath} + (3x yz) \hat{\jmath} + (z^3) \hat{k}$. Find Curl \vec{F} and Div \vec{F}
- (d) [7 pts] Compute the work done by the force field $F(x, y) = (y) \hat{\imath} + (-x) \hat{\jmath}$ acting on object as it moves along parabola $y = x^2 1$ from (1,0) to (-2,3)
- (e) [7 pts] Ali has a tent its volume is similar to the volume of the solid bounded by $z = 4 y^2$, x + z = 4, x = 0 and z = 0. Find the volume inside tent