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Abstract:

The voltage and VAR issues have become a significant problem in
recent years. This is due to the steadily increasing power system sizes, high
loading of transmission facilities and abnormal operating conditions arising
from inadequate VAR balance. The problem has worsened with voltage
instability that arise in mature systems. The blackout events have confirmed the
importance of reactive power planning and dispatching. in maintaining the
security of modern power systems. An algorithm of reactive power dispatch is
described which incorporates the voltage collapse proximity indicator to
minimize the possibility of voltage collapse in the system.

Keywords: Reactive power planning — Voltage stability — Voltage collapse
proximity indicator — Genetic algorithm (GA).

I-Introduction:

Bulk power transfers in electric power systems are limited by
transmission network security. The binding security limit can be a limit on line
flow, voltage magnitude, voltage collapse or other operating constraint. Under
highly stressed conditions the effects of capacitor switching and generator
reactive power limits become significant [1].

Utilities in recent days face conflicting demands. On one hand because
of economic and environmental reasons there are problems in adding to the
generation side, or in getting right of way for more transmission lines for
transmitting power. On the other hand the demand for secure and reliable
power to customers keeps on increasing. This means that the power system
equipment is operating at close to its limits. The interconnection in the power
system adds to the complexity of maintaining and running the power system
optimally. One outcome of the above factors is the voltage stability and
voltage/VAR violation problems [2].
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state voltages at all buses in the system to. their normal conditions after being
subjected to disturbances. A systém is in a state of voltage instability when
disturbances conditions cause a progressive and uncontrollable voltage drop.
The main factor causing voltage instability is the reactive power mismatch in
the power system [3].” Voltage collapse is the process by which voltage
instability leads to a very low voltage profile in a significant part of the system
[4]. Voltage/VAR violation problem is characterized by violation of limits in
generators reactive power and/or voltages of load buses. If voltage/VAR
violations are left unattended or not deait with properly, there is a danger of
voltage/VAR violations developing into voltage stability problem.

Once a new setting of controllers to solve the voltage/ VAR violations
and voltage stability problems, have been arrived at, a new power flow
scenatio-tesults. Sometimes, this new power flow scenario may have problems
of overload, which has to be avoided [2].

In VAR planning problems, the determination of the candidate buses
for installing new VAR sources plays an important role in the final solution.
Correct selection of the candidate buses can result in better final solution. A
voltage .collapse proximity indicator (VCPI) is used to identify weak buses and
to choose these weak buses as candidate buses for the installation of new VAR
sources [5].

In this paper an algorithm of reactive power dispatch is described which
incorporates the voltage collapse proximity indicator to minimize the
possibility .of voltage collapse in the system. The results show the effect of
VAR planning on reducing both the VCPI of load buses and the percentage
loading of most of the transmission lines of the network. Also it will be noticed
how the voltage profile of the buses which exhibit under voltage violation was
improved.

11- Problem Formulation:

The VAR planning problem has been treated as an optimization
problem concerned with the attempt to simultaneously improve -certain
objective function and satisfy equality and inequality constraints. However, it
is believed that the objective function that weights the voltages at each load
node according to its collapse proximity level as penalty factor is preferable.
This is because a higher priority is then given to nodes which are closer to
collapse [6,7]. ' '

obyectzve function:
minimize objfunc = power loss cost + capacitor operating cost + pytpq.
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a)

b)

The system operation constraints:

Load flow equations (equality constraints):

Py — Py = il le I Yijl cos(0;+0;-6;) for i=1--N, excluding the
' slack bus
Qi ~ Q4 =- vl V-] | Yijl sin(61j+5*-6i) for i=1--NG, excluding the
slack bus

Qg — Qi +Qui = -3 V{{ V|| Y} sm(e,J+5 8 for i=1--NL

Inequality constraints:
Qgimin < Qgi < Qgj max i=1--NG, excluding the slack bus
Viin € Vi € Vinay ' i;l--NL
Qe < Qomax © 1=1--NL
Where, S ;
N Total number of buses
NG Number of generating buses
NL Number of load buses
NC Number of buses with capacitors installed
i,] Index for buses
Py Real power generation at busi (p.u.)
Qg Reactive power generation at bus i (p.u.)
Py Real power demand at busi (p.u.)
Qu Reactive power demand at bus i (p.u.)
Q.i Reactive power support from new capacitors at bus 1(p.u)
Vi Voltage at bus i (p.u.)
Y Element of network admittance matrix (p.u.)
i Phase angle of Yj; (radian)
& Voltage angle at bus i (radian)
Qunax Maximum reactive power support possible to add (p.u.)

Q™" Qg™ R.eaf:tive power generation limits at bus i (p.u.)
Vnin, Vmax  Limits on bus voltage levels (p.u.)
Py, Pa Penalty terms for load bus voltage and generator reactive

power violations.

II1- Criterion for Selection of Candidate Buses:

The important issue of the VAR planning problem is to determine the
locations for installing nhew VAR sources. An appropriate selection of

candidat
optimal

e buses can both reduce the solution space and obtain a better final
solution. A system may be voltage unstable if it includes at least one

voltage unstable bus [8] and appropriate VAR planning can enhance the system

security
order to

margin. In this paper, a weak-bus oriented criterion is developed in
determine the candidate buses.
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In the following, an efficient and simple indicator presented earlier [9]
is used to identify weak buses in electrical power system: The indicator is
based on-a power flow Jacobian matrix, J, which is calculated at the current
operating point of the system. The voltage collapse prox1m1ty indicator (VCPI)
for each load bus, considering reactive power is:

VCPloi =X AQg / AQa . jeNG, ieNL

The motivation for this definition is that the voltage is mostly affected by
reactive power. For a voltage stable system, all VCPlg; will have a value
greater than but close to unity, while for a system close to voltage collapse, at
least one VCPIQl will become large, approaching infinity at the point of
collapse It is apparent that the weakest bus in the system will have the
maximum value of VCPlg;.

IV- Proposed Genetic Algorithms:

Genetic algorithms are inspired by the mechanism of natural selection,
a biological process in which stronger individuals are likely be the winners in a
competitive environment. They presume that the potential solution of problem
is an individual and can be represented by a set of parameters. These
parameters are regarded as the genes of a chromosome and can be structured
by a string of values in binary form. A positive value, generally known as
fitness value, is used to reflect the degree of “goodness” of the chromosome for
solving the problem [10].

The algorithm starts from an initial population generated randomly.
Using the,.genetic operations considering the fitness of a solution, which
corresponds to the objective function for the problem generates a new
generation is generated. The fitnessés of solutions are improved through
1terat10ns of generations. When the algorithm converges, a group of solutions
with better fitnesses is generated, and the optimal solution is obtained [11 121,
The main components of GAs are:
Coding: representing the problem at hand by strings.
Initialization: initializing the strings.
Fitness Evaluation: determining how fit is a string.
Selection: deciding who mates.
Crossover: exchanging information between two mates.
6. Mutation: introducing random 1nforrnat10n
1. Coding:
Each individual in the populatlon consists of a number of parameters equal
to the number of weak buses with relatively high VCPI. Each parameter is
binary coded to form the chromosome. The value of each parameter
expresses the size of VAR source placed at the selected bus.

AR
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2. Initialization: ,
Fair coin tosses are used to 1mt1ahze all binary coded strmgs forming the
unrated population. :

3. Fitness Evaluation:

All strings are evaluated w1th the same fitness function. The fitness
function incorporates the objective function, i.e., the total cost of the
proposed capacitor placement scheme with the cost of real power loss and
cost penaltles if’ a string violates any of the constraints. In this way a rated
population is formed and GA proceeds such that the fitness function is

maximized and, consequently, the objective function is minimized.
4. Selection:

The roulette-wheel selectlon scheme is used. Each slot on the wheel is .-

paired with an individual in the population. The size of each slot is
proportional to the corresponding individual fitness. In such a scheme, a
fitter string receives a higher number of offspring and thus has a higher
chance of surviving in the subsequent generatlon
5. Crossover:
Given a crossover probability, simple crossover is performed to exchange
information between strings. In the proposed algorithm single-point
crossover is performed. o ‘
6. Mutation: ‘ ‘
Given a mutation probability, random alteration of genes in a string may
occur. For a binary coded string, a mutation represents a simple bit change.
7. Convergence / Termination of the GA:
When the maximum allowable number. of generations for the GA is
reached the best solution found so far is returned.

Figure (1) shows a complete cycle representmg one generation of the search:

[13]
Unrated Rated
population population
, Selection
function

Population Reproduction Population
of parent function of parents
copies

Figure (1): General procedure for all evolutionary computations.
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The system tested and described is the IEEE 14-bus system [14]. The

following parameters are used for GA:

Population size = 30

Max. generation = 15

Crossover probablhty 0.9

Mutation probability = 0.001
The number of parameters that consist the genetic chromosome is determined
according to the number of weak load buses at a certain hour. The results of
GA are compared with the results which were obtamed by applymg 1n1t1al load
flow calculations without any compensanon :

VL Numerical Results:

The initial load flow results show that, with no reactive power
compensation, there are several weak load buses with relatively high VCPL
-After the reactive power plannmg is completed the total reactive power
compensation is summarized in tablel. As shown the VCPI for all buses were
- reduced and the voltage magnitudes were raised. The reactive power injection
take place at the bused with relatively high VCPI. The values of VAR injected
were determined using the GA. Figure 2 shows the improvement in the Q-V
curve of the weakest bus (bus 14) during the peak load hour due to reactive
power compensation. Another result of VAR planning is the reduction of
percentage loading of most of the network transmission lines as shown in table:
2. 1t was observed that after compensation the voltage of all buses lied within
the specified operating range 0.95-1.05. Figure 3 shows the voltage profile of
the weakest bus during the peak load hour before and after compensation.
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Table 1: Volta

ge magnitudes, VCPI and VAR injected during the hour of peak

load
Bus Initial Load Flow = Genetic Algorithm
no. Volt. VCPI Q. Volt. VCPI1 Qe
(puw) . (Mvar) (pu) (Mvar)

4 0.946 1.068 0 0.95 1.0654 0.8
5 0.996 | 1.031 0 0.998 1.0296 0
7 0.972 1.084 0 0.982 1.0779 0
9 0.944 1.145 0 0.963 1.1324 1.85
10 0.946 1.14 0 0.962 1.1291 0.15
11 0.978 1.076 0 0.986 1.0701 0
12 0.992 1.045 0 0.996 1.0424 0
13 0.981 1.066 0 0.988 1.0608 0
14 0.923 1.187 0 0.952 1.1606 3

Table 2: Percentage loading of transmission lines during the hour of peak load

Line Initial Load Flow | Genetic Algorithm
From To ' :
1 2 73.446 74.42
1 5 74.451 73.909
2 3 36.339 36.677
2 4 56.333 55.158
2 5 4985 5.181
3 4 18.738 - 17.988
4 5 44,521 44.324
4 7 47391 - 51.878
4 9 24.122 26.383
5 6 56.167. 54.423
6 11 57.052 43371
6 12 48.844 44.201
6 13 69.687 60.343
7 8 65.868 55.14
7 9 61.225 51.618
9 10 4.821 6.589
9 14 35.192 41.123
10 11 42317 27.096
12 13 33.163 23.587
13 14 43124 28.59
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Figure (2): Q-V curve of the weakest bus.
a- with compensation b-without compensation .
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Figure (3): Voltage profil¢ of the weakest bus
a- with compensation b- without compensation
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VI1I- Conclusion:

In this paper, an algorithm of optimal VAR planning is described which
incorporates the voltage collapse proximity ~indicator to  minimize the
possibility of Voltage collapse in the system. The optimal VAR problem was
solved by minimizing the total cost, which includes the operation costs of new
VAR sources and the cost of transmission power loss. The IEEE 14-bus system
was tested. The genetic algorithm (GA) was used to solve such a problem. The
VCPI was reduced and the voltage profile throughout the planning period was
improved from the under-voltage seen in the initial load flow to the required
operation range. It was also found that'new VAR sources are installed at or
near load buses that exhibit under-voltage violation. The GA is characterized
by the lack of assumptions for linearity or convexity. GAs can be applied
successfully in many situations where conventional methods fail. They can be
applied in situations where a fitness value can be determined from system
results. GAs weed out the bad and tend to produce more of the good
individuals. Not only they produce more of the good solutions but better and
better solutions. This is because they combine the best traits of parent
individuals to produce superior children. The resulting analysis accuracy can
not be surpassed by any other Al technique. The results show the effectiveness
of the proposed technique in the area of power system planning.
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