	TRIBOLOGY	Master Preparatory in Design
Faculty of Engineering Dep. of Design En	Code 4786	Time Allowed 3 hours Exam 2013
Problem Number 1 (15	Morks	Exam 2015
	· · · · · · · · · · · · · · · · · · ·	t other temperatures can be found
from an ASTM c		tother temperatures can be found
		heat 0.45, and the viscosities are:-
SAE NO.	30	50
viscosity at 10	0 F,cS 115	230
		E 30,SAE 50 OILS in Reyns,and
kilogra	ms meter hour un	hits at 100^{0} F.
	e-viscosity coeffici	
-		tant in lubricant theory?
Problem Number 2 (15		
-	ls equations in thr	
		up all assumptions,
Problem Number 3 (15	·	ditions, physical meaning
		pearing that is at the top and bottom
		ng lower surface is greater than the
surfaces. where the m	ction on the movi	upper fixed surface.
Problem Number 4 (15)Marks	upper inter surface.
		kness in three dimension explain:-
1-point of contac	•	side leakage 3-fatigue failure
Problem Number 5 (15	5)Marks	
Write a discussio	n on the various f	riction theories
Problem number 6 (2:		
•	low drawing diag	ram of exponential wedge to the
right of the origin .		
	\sim	
	\backslash	
	Y	
KII Lange		
The h		
40 U	>	
1×		
For diverging exponential w	edge see drawing	diagram
Put the boundary condition	8	
Let α is the exponential fact		0
for Reynolds equation in on	e dimension which	h is equal to:-
$dp/dx = 6U \eta (h - \overline{h}) / h^3$		
Replace		
\overline{h} by $\mathbf{h}_0 e^{-\alpha \overline{x}} \mathbf{h}$ by \mathbf{h}_0	$e^{-\alpha x}$ and	

prove that the pressure distribution" p " for the exponential film is equal to:p=-3 U η [e^{-2 αx} -e^{-3 αx}]/ (α h₀²)

مع تحيات أ.د.عبد الله سند الطوخي