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Abstract 

This work considers the application of the computer simulation 
technique as a problem solver tool. The heat distribution has been 
solved using the Monte Carlo simulation approach. We applied two 
different types of the heat distribution problem. The first one is the 
one-dimensional space, "heating metal bar" problem. The second 
problem is the two-dimensional space, "house heating by the sun". 
Both simulation and numerical results have been compared. The finite 
difference technique has been used in the numerical solution. The 
results show a good agreement for both approaches. 

Introduction 

Today, simulation analysis is a powerful problem-solving 
technique. Its origin lies in statistical sampling theory and analysis of 
complex probabilistic physical systems. The common thread in both 
of these is the use of random numbers and random sampling to 
approximate an outcome or solution. Studying the behavior of the 
system by this method becomes a necessity in several situations where 
we have either no other alternatives or the alternatives available are, 
not efficient, for more details see Law [I], Neelamkavil [2], and 
Alan[3]. 
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H. Gould [4], and Hockney [5] ,  used random walks to 
characterize the motion of a dust partical in a glass of water. The 
original statement of a random walk was formulated in the context of 
a "drunken saiior." If a drunkard begin at a lamp post and takes N 
steps of equal length in random direction, how far will the drunkard 
walker grows linearly with time'? This result and its relation to 
diffusion leads to many applications that might seem to be unrelated 
to random walks. 

In this work we implement a random walks idea to 
characterize two different problems. The first problem we used is the 
well-'mown "heated metai bar" model. This model characterized the 
heated distribution metal bar implementing random walks approach to 
visit right or locations successively. At time zero, the bar temperature 
distribution foIIows the initial condition imposed. -When the metal bar 
is heated a new level of temperature maintained throughout the 
durat~on of the simulation, for more details see Hoover 161. 

The second example represents a house heated by su:: 
from the top and sides such that the temperature at the bottom remains 
fixed and equals to zero. The problem is how to compute the 
temperature distribution through the house, using Monte Carlo 
simulation, for more details see Texler et al, [7]. 

The results of the Monte Carlo simulation for both 
examples have been compared with numerical solutions using the 
finite difference method. Good agreements have been found for the 
both examples. 

Heated Metal Bar Model 

We first consider one-dimensional model, "heated metal bar". 
The heated metal bar is fully covered by perfect insulation except at 
one point, the mid point. The two ends of the metal bar are kept to be 
with zero Celsius. The objective is how to compute the temperature 
distribution over the whole bar during the simulation time? Initially, 
the metal bar temperature is uniformly zero on a normalized scale. A 
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step increase in temperature is applied at the un-insulation mid point, 
and the new level is maintained throughout the duration of the 
simulation. Theoretically, the temperature distxibution obeys the initial 
condition imposed. For comparison sake, we used the same initial 
condition imposed for both simulation and numerical approaches. 

1 - Simulation Approach 

We intend to adopt the random walk technique to simulate the 
temperature distribution of the metal bar. The metal bar is heated 
continuously at the un-insulation mid point of the bar. In order to 
apply the random walk techmque in our simulation study, we divide 
the bar length, L, into n equal intervals with space h = Lln. The 
walker begins to move randomly to the right or left of the un- 
insulation, mid bar, point. At each interval of time the walker has a 
probability p of a step to right and a probability q ( = 1-p ) of a step to 
the left. The direction of each step is independent of the preceding 
one. 

For simplicity, we assume that the probabilities p and q are 
equal, i.e., p = q = 112. The random walk movement to right or to left 
of the current grid point is dependent on the value of p and q.  
Determination of the movement orientation is required to generate a 
uniformly distributed independent random number rand (0, 1). The 
random walk moves according to the following: 

if rand > ?4 then 

( visit right grid point 

else { 
visit left grid point 

When the random walls is performed repeatedly, nt, times, an 
estimate of the probability of the visiting each grid point, P, can be 
obtained. The probability P is computed from the ratio of the number 
of grid point visits, N, to the total number of trials, nt, i.e., P = Nlnt. 
This technique is considered as a Monte Cado simulation, since we 
use the random numbers to approximate the outcome. 
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The temperature ui at each grid point will be computed 
according to the accumulated walker visits and the initial temperature 
value at that grid point. The initial temperature at each grid point, 
hl(xi), is evaluated from the iilitid condkion imposzd. In our study, we 
introduced the initial condit~on as: 

U(xi)=4xi(1-xi) ,  for i = l ,  ..., n-1 - - - - - - - (1) 

Where 

In program we used the array element p-cum (i) to accumulate 
the number of grid point's visit after nt trial. The probability of 
visiting the it" point is 

Pi=p_cum(i)/nt , for i = 1 , 2 ,  ..., n ------- (2) 

Now, the temperature at each grid point can be computed as: 

Ui = [ Pi * U (xi) ] I [2 (n-1)] , for i = 1,2, . . . , n ------- (3) 

In order to increase the computational accuracy, we perform 
"k" of those random moves at each grid point, xi, then accumulated 
the number of visit and compute the probability of each grid point. So, 
the average of the ternpreature ui at xi is obtained. 

2- Numerical Approach 

Problem involving time, t, as one independent variable 
leads usually to parabolic equations. The simplest parabolic equation 
derived from the theory of heat conduction is 
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Its solution gives the temperature U at a distance x units of 
length from mid point of a thermally insulated bar after t seconds of 
heat conduction. In such a problem the temperatures at the ends of a 
bar of length L are often hown for all time. In other words, the 
boundary conditions are known. It is also usual for the temperature 
distribution along the bar be known at some particular instant. This 
instant is usually taken as zero time and the temperature distribution is 
called the initial condition. The solution gives U for values of x 
between 0 and L and values of t  from zero to infinity. 
The boundary condition is: 

Applying the finite difference method to solve the parabolic 
equation (4) and (5) is the integration of the differential equation over 
a space S, for details see Smith [8]. One finite-difference 
approximation to equation (4) is 

Where 

xi =i*h , for i =  0, 1, ..., n ; 

tj = j * k ,  for j=O, l ,  ... . 

equation (6) can be written as 

k 
Where r = - ,gives a formula for the unknown 

h2 
temperature, Ui at the ( i, j+l ) mesh point in terms of known 

" temperature " along the jth time row, as in Figure 4. 
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The analytical solution of the partial equation (4) satisfying the initial 

condition (1) and the boundary condition (5) is given as: 

8 O C 1  1 U(x, t) = - , Z -,( sin - n TC) (sin n TC x) (exp ( - n2 2 I)) ----(8) 
TC n=ln 2 

For more details see Smith [8]. 

11- Solar heated house 

Consider the region illustrated in Fig.5. This figure represents a 
house heated by the sun from the top and sides and the temperature at 
the bottom remains fixed and equal to zero. The problem is how to 
compute the temperature distribution throughout the house. 

The boundary condition is imposed according to the following 

assumptions: 
0 

1) The top heated to a constant temperature of 20 C by the sun. 

0 
2) The bottom maintains a constant temperature of 0 C from 

the earth. 

3) The temperature of the vertical sides is proportional to their 
height: 

U (x,y) = 20y / H. - - - - - - - (8) 

Where 

U (x, y) is the temperature at width x and height y, 

and H is height of the house. 
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So, the boundaries conditions are: 

U(xi,O)=O, forallxi E(O,L); 

U (xi, H) = 20, for d l  xi E( 0, L); -------- (9) 

U (0, yj) = U (L, yj) = 20 * yj / H 

1- Simulation approach 

We divide the x-axis and the y-axis into m and n intervals,' 
respectively. So, the region is divided into m x n grid points. This 
scheme of grids provides coordinate points to measure the temperature 
at each pomt (xi, yj). Initially, we imposed zero temperature for all 
gnd points inside the room Next, we started to compute the . 
temperature, U(X~, yj) , according to the random numbers generated. 
The temperature at the point (xi, yj) has been computed by observing 
the random path of a thermal messenger as it goes from (xi , yj) to 
some boundary point. The messenger bounces randomly from grid 
point to another grid point until it touches a boundary point. We call 
ths messenger's path a random walk. When a path from the point (xi, 
yj) terminates at a boundary point B, the temperature at B is added to 
the temperature at (xi, yj). For each interior point (xi, yj), we perform 
k of those random walks, accumulating the heat U(X~, yj) and then we 
calculate the average of the accumulated temperature; U(X~, yj) 1 k. 

2- Numerical approach 

The domain of integration of a two-dimensional parabolic 
equation is always an area S bounded by a closed curve C. The 
problem can be written in non-dimensional form as: 



Taleb A. 5 .  Obaid 

The simplest finite difference approximation is the five-point 
equation, which is based on the central difference as: 

Where k is the iteration factor, h l  and h2 are the interval space in s- 

axis and y-axis, respectively. 

k k 
Let r l  = 7 , and rz =- , so the equation (7) become 

hl h2' 

For simplesty sake we suppose that hl = h2 , so rl= r2 = r. The equation 

( 1  2) becomes: 

The Result and Discussion 

The results achieved through the present work discusses the 
two proposed problems. The results of the Monte Carlo simulation 
and the numerical finite difference are presented for both problems as 
the following: 

I) Heated bar problem 

The geometry of the problem studied and the boundary 
condition are shown in figure 1. The domain was chosen with bar 
len~gth of unit (L = 1), and the number of grid points is n , the interval 
length is h = l/n . 
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Table I, shows the temperature distribution for 
simulation, numerical, and exact (equation 8) solutions beside the 
number of accumulated visits for each grid point and the computed 
probability to them. The computations are achieved for n=10 and 
nt=10000. Table 2, shows the same information when n=20. The 
agreement is quite clear for both tables. 

Figure 2, shows the exact solutions, simulation solutions , and 
numerical results . As expected the temperature distribution looks like 
as a normal distribution. The highest temperature occurred at mid 
point of the bar and the lowest temperature is at the end points. The 
simulation results achieved for n = 10 and nt = 10000. While the 
numerical results was achieved when r = 0.01. This r value guaranteed 
the stability of the numerical results, for more details see Smith 181. 

Figure 3, also shows the exact, simulation and numerical 
solutions when n = 20 and nt = 10000. The numerical results achieved 
for r = 0.005. 

The comparison of the results (exact, simulation and 
numerical) are shown good agreement, as it is clear in Figs. 2 and 3.  

II) Solar House. 

The geometry of the problem considered and the boundary 

condition is shown in figure 4. The computational domain was chosen 

with 5 units in the x-axis and y-axis, i.e. width = hight = H = 5. The 

number of grid points is n = 5. The interval length is 
n 5 - - - - = 1. 
H 5 

So, the house region is divided to 5 x5 grid points. 
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Figure 5 shows the contour lines of the heat distribution of the 
solar house when n=5. The simulation results depicted in solid line 
while the numerical results are the doted line. The numerical results 
are performed for r = 0.01 of equation 13. 

Figure 6 ,  shows also lile results of si~llulation +id numerical 
approaches for n=10. The numerical results are achieved for r =0.005. 
In both figures 5 and 6 show a good agreement for simulatioll and 
numerical results. 
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Fig. 1 ,  The Boundary Condition of the 
Heated Bar. 
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Temperature Distribution 
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Fig. 2, Comparison Results of Heated Bar for n = 10. 
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Teperature Distribution 
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Fig. 3; Cornparision Results of Heated Bar for n = 20. 
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Fig. 4, The Boundary Conhtion of the 
Solar Heated House. 
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Temperatur Distribution 

Fig.5, Solar Heated House, n=5 
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Temperature Distribution 

Fig. 6, Solar Heated House, n=10 
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