Search In this Thesis
   Search In this Thesis  
العنوان
Mechanical and Biological Evaluation of an Experimental PEEK Composite Containing Carbon Nanotubes and Bioactive Glass \
المؤلف
Khallaf, Reem Magdy.
هيئة الاعداد
باحث / ريم مجدي خلاف
مشرف / طارق صلاح الدين حسين
مشرف / محمد صلاح ناصف
مشرف / اماني عبد المنعم مصطفى
تاريخ النشر
2023.
عدد الصفحات
180 p. :
اللغة
الإنجليزية
الدرجة
الدكتوراه
التخصص
Dentistry (miscellaneous)
تاريخ الإجازة
1/1/2023
مكان الإجازة
جامعة عين شمس - كلية طب الأسنان - علم المواد الحيوية
الفهرس
Only 14 pages are availabe for public view

from 180

from 180

Abstract

1. Hallmann L, Mehl A, Sereno N and Hämmerle CHF. The Improvement of Adhesive Properties of PEEK Through Different Pre-treatments. Applied Surface Science. 2012;258(18):7213-7218.
2. Rahmitasari F, Ishida Y, Kurahashi K, Matsuda T, Watanabe M and Ichikawa T. PEEK with Reinforced Materials and Modifications for Dental Implant Applications. Dentistry Journal (Basel). 2017;5(4):35.
3. Zheng Y, Xiong C, Zhang S, Li X and Zhang L. Bone-Like Apatite Coating on Functionalized Poly(Etheretherketone) Surface via Tailored Silanization Layers Technique. Materials science & engineering C, Materials for biological applications. 2015;55:512-523.
4. Honigmann P, Sharma N, Okolo B, Popp U, Msallem B and Thieringer FM. Patient-Specific Surgical Implants Made of 3D Printed PEEK: Material, Technology, and Scope of Surgical Application. BioMed research international. 2018;2018:4520636.
5. Järvinen S, Suojanen J, Kormi E, Wilkman T, Kiukkonen A, Leikola J, et al. The Use of Patient Specific Polyetheretherketone Implants for Reconstruction of Maxillofacial Deformities. Journal of Cranio-maxillofacial Surgery. 2019;47(7):1072-1076.
6. Panayotov IV, Orti V, Cuisinier F and Yachouh J. Polyetheretherketone (PEEK) for Medical Applications. Journal of Materials Science: Materials in Medicine. 2016;27(7):118.
7. Owusu JA and Boahene K. update of Patient-Specific Maxillofacial Implant. Current opinion in otolaryngology & head and neck surgery. 2015;23(4):261-264.
8. Najeeb S, Zafar MS, Khurshid Z and Siddiqui F. Applications of Polyetheretherketone (PEEK) in Oral Implantology and Prosthodontics. Journal of prosthodontic research. 2016;60(1):12-19.
9. Cao J, Lu Y, Chen H, Zhang L and Xiong C. Preparation, Mechanical Properties and In Vitro Cytocompatibility of Multi-Walled Carbon Nanotubes/Poly(Etheretherketone) Nanocomposites. Journal of Biomaterials Science, Polymer Edition. 2018;29(4):428-447.
10. Seuss S, Heinloth M and Boccaccini AR. Development of Bioactive Composite Coatings Based on Combination of PEEK, Bioactive Glass and Ag Nanoparticles with Antibacterial Properties. Surface & Coatings Technology. 2016;301:100-105.
11. Almasi D, Iqbal N, Sadeghi M, Sudin I, Abdul Kadir MR and Kamarul T. Preparation Methods for Improving PEEK’s Bioactivity for Orthopedic and Dental Application: A Review. International journal of biomaterials. 2016;2016:8202653.
12. Ma H, Suonan A, Zhou J, Yuan Q, Liu L, Zhao X, et al. PEEK (Polyether-Ether-Ketone) and its Composite Materials in Orthopedic Implantation. Arabian Journal of Chemistry. 2021;14(3):102977.
13. Feng S, Liu C and Sue H-J. Preparation of PEEK/MWCNT Nanocomposites Via MWCNT-Induced Interfacial Crystallization Mediated Compatibilization. Composites Science and Technology. 2022;221:109298.
14. Han C-T, Chi M, Zheng Y-Y, Jiang L-X, Xiong C-D and Zhang L-F. Mechanical Properties and Bioactivity of High-Performance Poly(etheretherketone)/carbon Nanotubes/Bioactive Glass Biomaterials. Journal of Polymer Research. 2013;20(8):203.
15. Pei B, Wang W, Dunne N and Li X. Applications of Carbon Nanotubes in Bone Tissue Regeneration and Engineering: Superiority, Concerns, Current Advancements, and Prospects. Nanomaterials (Basel, Switzerland). 2019;9(10):1501.
16. Choudhary V and Gupta A. Polymer/Carbon Nanotube Nanocomposites. Carbon Nanotubes - Polymer Nanocomposites: Intech; 2011.
17. Diez-Pascual AM, González-Domínguez JM, Martinez Rubi Y, Naffakh M, Ansón A, Martínez MT, et al. Synthesis and Properties of PEEK/Carbon Nanotube Nanocomposites: Scrivener Publishing LLC. ; 2010 07/20.
18. Lu HH, Tang A, Oh SC, Spalazzi JP and Dionisio K. Compositional Effects on the Formation of a Calcium Phosphate Layer and the Response of Osteoblast-Like Cells on Polymer-Bioactive Glass Composites. Biomaterials. 2005;26(32):6323-6334.
19. Harris L. A Study of the Crystallisation Kinetics in PEEK and PEEK Composites: University of Birmingham; 2011.
20. Alotaibi N, Naudi K, Conway D and Ayoub A. The Current State of PEEK Implant Osseointegration and Future Perspectives: A Systematic Review. European Cells and Materials. 2020;40:1-20.
21. Alqurashi H, Khurshid Z, Syed AUY, Rashid Habib S, Rokaya D and Zafar MS. Polyetherketoneketone (PEKK): An Emerging Biomaterial for Oral Implants and Dental Prostheses. Journal of Advanced Research. 2021;28:87-95.
22. Knaus J, Schaffarczyk D and Cölfen H. On the Future Design of Bio-Inspired Polyetheretherketone Dental Implants. Macromolecular bioscience. 2020;20(1):1900239.
23. Mishra S and Chowdhary R. PEEK Materials as an Alternative to Titanium in Dental Implants: A Systematic Review. Clinical implant dentistry and related research. 2019;21(1):208-222.
24. Li B, Wang X, Mao B, He T and Huang H. Improving the Mechanical Properties of Cf/ PEEK Composite by Implanting Functionalized Multi-Wall Carbon Nanopaper. Applied Composite Materials. 2020;27(5):479-490.
25. Alexakou E, Damanaki M, Zoidis P, Bakiri E, Mouzis N, Smidt G, et al. PEEK High Performance Polymers: A Review of Properties and Clinical Applications in Prosthodontics and Restorative Dentistry. The European Journal of Prosthodontics and Restorative Dentistry. 2019;27(3):113-121.
26. Bathala L, Majeti V, Rachuri N, Singh N and Gedela S. The Role of Polyether Ether Ketone (Peek) in Dentistry - A Review. Journal of Medicine and Life. 2019;12:5-9.
27. Fu Q, Gabriel M, Schmidt F, Müller WD and Schwitalla AD. The Impact of Different Low-Pressure Plasma Types on the Physical, Chemical and Biological Surface Properties of PEEK. Dental Materials. 2021;37(1):e15-e22.
28. Díez-Pascual AM, Naffakh M, Marco C, Gómez-Fatou MA and Ellis GJ. Multiscale Fiber-Reinforced Thermoplastic Composites Incorporating Carbon Nanotubes: A Review. Current Opinion in Solid State and Materials Science. 2014;18(2):62-80.
29. Zanjanijam AR, Major I, Lyons JG, Lafont U and Devine DM. Fused Filament Fabrication of PEEK: A Review of Process-Structure-Property Relationships. Polymers (Basel). 2020;12(8):1665.
30. Valino AD, Dizon JRC, Espera AH, Chen Q, Messman J and Advincula RC. Advances in 3D Printing of Thermoplastic Polymer Composites and Nanocomposites. Progress in Polymer Science. 2019;98:101162.
31. Maniruzzaman M, Boateng JS, Snowden MJ and Douroumis D. A Review of Hot-Melt Extrusion: Process Technology to Pharmaceutical Products. ISRN Pharmacology. 2012;2012:436763.
32. Jaafar J, Siregar JP, Tezara C, Hamdan MHM and Rihayat T. A Review of Important Considerations in the Compression Molding Process of Short Natural Fiber Composites. The International Journal of Advanced Manufacturing Technology. 2019;105(7):3437-3450.
33. Papathanasiou I, Kamposiora P, Papavasiliou G and Ferrari M. The Use of PEEK in Digital Prosthodontics: A Narrative Review. BMC oral health. 2020;20(1):217.
34. Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP and Picart C. Bone Regeneration Strategies: Engineered Scaffolds, Bioactive Molecules and Stem Cells Current Stage and Future Perspectives. Biomaterials. 2018;180:143-162.
35. Zhao R, Yang R, Cooper PR, Khurshid Z, Shavandi A and Ratnayake J. Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments. Molecules. 2021;26(10).
36. Costa-Palau S, Torrents-Nicolas J, Brufau-de Barberà M and Cabratosa-Termes J. Use of Polyetheretherketone in the Fabrication of a Maxillary Obturator Prosthesis: A Clinical Report. Journal of Prosthetic Dentistry. 2014;112(3):680-682.
37. Sharaf MY and Eskander AE. PEEK versus Metallic Attachment-Retained Obturators for Patient Satisfaction: A Randomized Controlled Trial. European Journal of Dentistry. 2022;16(1):80-95.
38. Attia MA, Shokry TE and Abdel-Aziz M. Effect of Different Surface Treatments on the Bond Strength of Milled Polyetheretherketone Posts. The Journal of prosthetic dentistry. 2022;127(6):866-874.
39. Qin W, Li Y, Ma J, Liang Q and Tang B. Mechanical Properties and Cytotoxicity of Hierarchical Carbon Fiber-Reinforced Poly (Ether-Ether-Ketone) Composites Used as Implant Materials. Journal of the Mechanical Behavior of Biomedical Materials. 2019;89:227-233.
40. Konrad M, Alexander WE, Daniela G, Stefan S, christopher ML and Wolf-Dietrich K. Evaluation of a New PEEK Mandibular Reconstruction Plate Design for Continuity Defect Therapy by Finite Element Analysis. International Journal of New Technology and Research. 2016;2(7):65-71.
41. O’Reilly EB, Barnett S, Madden C, Welch B, Mickey B and Rozen S. Computed-Tomography Modeled Polyether Ether Ketone (PEEK) Implants in Revision Cranioplasty. Journal of Plastic, Reconstructive & Aesthetic Surgery. 2015;68(3):329-338.
42. Li Y, Li Z, Tian L, Li D, Lu B, Shi C, et al. Clinical Application of 3D-Printed PEEK Implants for Repairing Mandibular Defects. Journal of Cranio-maxillofacial Surgery. 2022;50(8):621-626.
43. Nocini R, D’Agostino A, Trevisiol L and Favero V. Mandibular Recontouring with Polyetheretherketone (PEEK) Patient-Specific Implants. British Medical Journal Case Reports. 2022;15:e248826.
44. Scolozzi P, Martinez A and Jaques B. Complex Orbito-Fronto-Temporal Reconstruction Using Computer-Designed PEEK Implant. J Craniofac Surg. 2007;18(1):224-228.
45. Kim MM, Boahene KD and Byrne PJ. Use of Customized Polyetheretherketone (PEEK) Implants in the Reconstruction of Complex Maxillofacial Defects. Archives of facial plastic surgery. 2009;11(1):53-57.
46. Goodson ML, Farr D, Keith D and Banks RJ. Use of Two-Piece Polyetheretherketone (PEEK) Implants in Orbitozygomatic Reconstruction. British Journal of Oral Maxillofacacial Surgery. 2012;50(3):268-269.
47. Uddin MN, Dhanasekaran PS and Asmatulu R. Mechanical Properties of Highly Porous PEEK Bionanocomposites Incorporated with Carbon and Hydroxyapatite Nanoparticles for Scaffold Applications. Progress in biomaterials. 2019;8(3):211-221.
48. Kruse HV, McKenzie DR, Clark JR and Suchowerska N. Plasma Ion Implantation of 3D-Printed PEEK Creates Optimal Host Conditions for Bone Ongrowth and Mineralisation. Plasma Processes and Polymers. 2021;18(5):2000219.
49. Schwitalla AD, Abou-Emara M, Spintig T, Lackmann J and Müller WD. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. Journal of Biomechanics. 2015;48(1):1-7.
50. Kaur G, Pandey OP, Singh K, Homa D, Scott B and Pickrell G. A Review of Bioactive Glasses: Their Structure, Properties, Fabrication and Apatite Formation. Jornal of Biomedical Materials Research Part A. 2014;102(1):254-2574.
51. Jiangtao F, Jiehe S, Wei C and Zhiyong G. Microstructure and Mechanical Properties of Carboxylated Carbon Nanotubes/Poly(L-lactic acid) Composite. Journal of Composite Materials. 2008;42(16):1587-1595.
52. Abbasi Z, Bahrololoom ME, Shariat MH and Bagheri R. Bioactive Glasses in Dentistry: A review. Journal of Dental Biomaterials. 2015;2(1):1-9.
53. Kaur G, Pandey OP, Singh K, Homa D, Scott B and Pickrell G. A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. Journal of biomedical materials research Part A. 2014;102(1):254-274.
54. Kokubo T and Takadama H. How Useful is SBF in Predicting In Vivo Bone Bioactivity? Biomaterials. 2006;27:2907-2915.
55. Scherrer S, Quinn J and Quinn G. Fractography of Dental Restorations. Key Engineering Materials. 2009;409:72-80.
56. Cao J, Lu Y, Chen H, Zhang L and Xiong C. Preparation, Properties and In Vitro Cellular Response of Multi-Walled Carbon Nanotubes/Bioactive Glass/Poly(Etheretherketone) Biocomposite for Bone Tissue Engineering. International Journal of Polymeric Materials and Polymeric Biomaterials. 2019;68(8):433-441.
57. Nascimento R, Sarig U, Cruz N, Carvalho V, Eyssartier C, Siad L, et al. Optimized‐Surface Wettability: A New Experimental 3D Modeling Approach Predicting Favorable Biomaterial–Cell Interactions. Advanced Theory and Simulations. 2019;2(7):1900079.
58. Liu C, Chan KW, Shen J, Liao CZ, Yeung KWK and Tjong SC. Polyetheretherketone Hybrid Composites with Bioactive Nanohydroxyapatite and Multiwalled Carbon Nanotube Fillers. Polymers (Basel). 2016;8(12):425.
59. Taymour N, Fahmy AE, Gepreel MAH, Kandil S and El-Fattah AA. Improved Mechanical Properties and Bioactivity of Silicate Based Bioceramics Reinforced Poly(ether-ether-ketone) Nanocomposites for Prosthetic Dental Implantology. Polymers (Basel). 2022;14(8):1632.
60. Zhang J, Wei W, Yang L, Pan Y, Wang X, Wang T, et al. Stimulation of Cell Responses and Bone Ingrowth into Macro-Microporous Implants of Nano-Bioglass/Polyetheretherketone Composite and Enhanced Antibacterial Activity by Release of Hinokitiol. Colloids and Surfaces B: Biointerfaces. 2018;164:347-357.
61. Wang H, Chen P, Shu Z, Chen A, Su J, Wu H, et al. Laser Powder Bed Fusion of Poly-Ether-Ether-Ketone/Bioactive Glass Composites: Processability, Mechanical Properties, and Bioactivity. Composites Science and Technology. 2023;231:109805.
62. Abdel-Salam FS, Elkheshen SA, Mahmoud AA, Basalious EB, Amer MS, Mostafa AA, et al. In-Situ Forming Chitosan Implant-Loaded With Raloxifene Hydrochloride and Bioactive Glass Nanoparticles for Treatment of Bone Injuries: Formulation and Biological Evaluation in Animal Model. International Journal of Pharmaceutics. 2020;580:119213.
63. Khalili AA and Ahmad MR. A Review of Cell Adhesion Studies for Biomedical and Biological Applications. International Journal Molecular Science. 2015;16(8):18149-18184.
64. Pintor AVB, Queiroz LD, Barcelos R, Primo LSG, Maia LC and Alves GG. MTT Versus Other Cell Viability Assays to Evaluate the Biocompatibility of Root Canal Filling Materials: A Systematic Review. International endodontic journal. 2020;53(10):1348-1373.
65. (ISO) Iofs. Biological evaluation of medical devices. no. 10993-5. 2009.
66. Wang L, He S, Wu X, Liang S, Mu Z, Wei J, et al. Polyetheretherketone/Nano-Fluorohydroxyapatite Composite with Antimicrobial Activity and Osseointegration Properties. Biomaterials. 2014;35(25):6758-6775.
67. Chan KW, Liao CZ, Wong HM, Kwok Yeung KW and Tjong SC. Preparation of Polyetheretherketone Composites with Nanohydroxyapatite Rods and Carbon Nanofibers Having High Strength, Good Biocompatibility and Excellent Thermal Stability. Royal Society of Chemistry Advances. 2016;6(23):19417-19429.
68. Mabrouk M, Mostafa A, Oudadesse H, Wers E, Lucas-Girot A and El-Gohary M. Comparative Study of Nanobioactive Glass Quaternary System 46S6. Bioceramics Developmment and Applications. 2014;4(1):1000072.
69. Schwitalla AD, Spintig T, Kallage I and Müller W-D. Flexural Behavior of PEEK Materials for Dental Application. Dental Materials. 2015;31(11):1377-1384.
70. Bredent U. BioHPP in the For 2 Press System. Processing Instructions. Bredent, UK. p. 1-16.
71. Xu A, Liu X, Gao X, Deng F, Deng Y and Wei S. Enhancement of Osteogenesis on Micro/Nano-Topographical Carbon Fiber-Reinforced Polyetheretherketone–Nanohydroxyapatite Biocomposite. Materials Science and Engineering: C. 2015;48:592-598.
72. Wakelin EA, Yeo GC, McKenzie DR, Bilek MMM and Weiss AS. Plasma Ion Implantation Enabled Bio-Functionalization of PEEK Improves Osteoblastic Activity. APL Bioengineering. 2018;2(2):026109.
73. Von Wilmowsky C, Vairaktaris E, Pohle D, Rechtenwald T, Lutz R, Münstedt H, et al. Effects of Bioactive Glass and Beta-TCP Containing Three-Dimensional Laser Sintered Polyetheretherketone Composites on Osteoblasts In Vitro. Journal of Biomedical Materials Research Part A. 2008;87(4):896-902.
74. Gan K, Liu H, Jiang L, Liu X, Song X, Niu D, et al. Bioactivity and Antibacterial Effect of Nitrogen Plasma Immersion Ion Implantation on Polyetheretherketone. Dental Materials. 2016;32(11):e263-e274.
75. Baştan FE. Fabrication and characterization of an Electrostatically Bonded PEEK- Hydroxyapatite Composites for Biomedical Applications. Journal of Biomedical Materials Resesearch Part B: Applied Biomaterials. 2020;108(6):2513-2527.
76. Cruz Pacheco A, Muñoz Castiblanco D, Gómez-Cuaspud J, Paredes-Madrid L, Vargas C, Zambrano J, et al. Coating of Polyetheretherketone Films with Silver Nanoparticles by a Simple Chemical Reduction Method and Their Antibacterial Activity. Coatings. 2019;9(2):91.
77. Al Lafi AG. FTIR Spectroscopic Analysis of Ion Irradiated Poly (Ether Ether Ketone). Polymer Degradation and Stability. 2014;105(1):122-133.
78. Nguyen HX and Ishida H. Molecular Analysis of the Melting Behaviour of Poly(Aryl-Ether-Ether-Ketone). Polymer. 1986;27(9):1400-1405.
79. Cao Z, Li Q, Yang Y, Chen Y and Liu X. The Surface Modifications of Multi-Walled Carbon Nanotubes for Multi-Walled Carbon Nanotube/Poly(Ether Ether Ketone) Composites. Applied Surface Science. 2015;353:873-881.
80. Liang S, Li G and Tian R. Multi-Walled Carbon Nanotubes Functionalized with a Ultrahigh Fraction of Carboxyl and Hydroxyl Groups by Ultrasound-Assisted Oxidation. Journal of Materials Science. 2016;51:3513–3524.
81. Jaimes ATC, Kirste G, de Pablos-Martín A, Selle S, de Souza e Silva JM, Massera J, et al. Nano-Imaging Confirms Improved Apatite Precipitation for High Phosphate/Silicate Ratio Bioactive Glasses. Scientific Reports. 2021;11(1):19464.
82. Nawaz A, Bano S, Yasir M, Wadood A and Ur Rehman MA. Ag and Mn-Doped Mesoporous Bioactive Glass Nanoparticles Incorporated into the Chitosan/Gelatin Coatings Deposited on PEEK/Bioactive Glass Layers for Favorable Osteogenic Differentiation and Antibacterial Activity. Materials Advances. 2020;1(5):1273-1284.
83. Yu S, Hariram KP, Kumar R, Cheang P and Aik KK. In Vitro Apatite Formation and its Growth Kinetics on Hydroxyapatite/Polyetheretherketone Biocomposites. Biomaterials. 2005;26(15):2343-2352.
84. Li S, Li G, Hu J, Wang B, Wang L, Wang H, et al. Porous Polyetheretherketone-Hydroxyapatite Composite: A Candidate Material for Orthopedic Implant. Composites Communications. 2021;28:100908.
85. Miyazaki T, Matsunami C and Shirosaki Y. Bioactive Carbon-PEEK Composites Prepared by Chemical Surface Treatment. Materials science & engineering: C- Materials for biological applications. 2017;70 (Pt 1):71-75.
86. Owusu JA and Boahene K. update of patient-specific maxillofacial implant. Current opinion in otolaryngology & head and neck surgery. 2015;23(4):261-264.
87. Han X, Yang D, Yang C, Spintzyk S, Scheideler L, li P, et al. Carbon Fiber Reinforced PEEK Composites Based on 3D-Printing Technology for Orthopedic and Dental Applications. Journal of Clinical Medicine. 2019;8(2):240.
88. Ma R and Guo D. Evaluating the Bioactivity of a Hydroxyapatite-Incorporated Polyetheretherketone Biocomposite. Journal of Orthopaedic Surgery Research. 2019;14(1):32.
89. Galow A-M, Rebl A, Koczan D, Bonk SM, Baumann W and Gimsa J. Increased Osteoblast Viability at Alkaline PH In Vitro Provides a New Perspective on Bone Regeneration. Biochemistry and Biophysics Reports. 2017;10:17-25.
90. Masamoto K, Fujibayashi S, Yabutsuka T, Hiruta T, Otsuki B, Okuzu Y, et al. In Vivo and In Vitro Bioactivity of a ”Precursor of Apatite” Treatment on Polyetheretherketone. Acta Biomaterialia. 2019;91:48-59.
91. Deng Y, Liu X, Xu A, Wang L, Luo Z, Zheng Y, et al. Effect of Surface Roughness on Osteogenesis In Vitro and Osseointegration In Vivo of Carbon Fiber-Reinforced Polyetheretherketone-Nanohydroxyapatite Composite. International Journal of Nanomedicine. 2015;10:1425-1447.
92. Rong C, Ma G, Zhang S, Song L, Chen Z, Wang G, et al. Effect of Carbon Nanotubes on the Mechanical Properties and Crystallization Behavior of Poly(Ether Ether Ketone). Composites Science and Technology. 2010;70(2):380-386.
93. Kumar M, Kumar R and Kumar S. Wettability Analysis of Polyetheretherketone-Based Nanocomposites. In: Singh S, Prakash C, Ramakrishna SandKrolczyk G, editors. Advances in Materials Processing; 2020; Singapore: Springer Singapore; 2020. p. 185-195.
94. Geckeler KE, Wacker R and Aicher WK. Biocompatibility Correlation of Polymeric Materials Using Human Osteosarcoma Cells. Naturwissenschaften. 2000;87(8):351-354.
95. Przykaza K, Jurak M, Kalisz G, Mroczka R and Wiącek AE. characteristics of Hybrid Bioglass-Chitosan Coatings on the Plasma Activated PEEK Polymer. Molecules. 2023;28(4):1729.
96. Dowling DP, Miller IS, Ardhaoui M and Gallagher WM. Effect of Surface Wettability and Topography on the Adhesion of Osteosarcoma Cells on Plasma-Modified Polystyrene. Journal of Biomaterials Applications. 2011;26(3):327-347.
97. Ahn HH, Lee IW, Lee HB and Kim MS. Cellular Behavior of Human Adipose-Derived Stem Cells on Wettable Gradient Polyethylene Surfaces. International Journal of Molecular Sciences. 2014;15(2):2075-2086.
98. Ma J, Liang Q, Qin W, Osei Lartey P, Li Y and Feng X. Bioactivity of nitric acid and calcium chloride treated carbon-fibers reinforced polyetheretherketone for dental implant. Journal of the Mechanical Behavior of Biomedical Materials. 2019;102:103497.
99. Rehman MAU and Batool SA. Development of Sustainable Antibacterial Coatings Based on Electrophoretic Deposition of Multilayers: Gentamicin-Loaded Chitosan/Gelatin/Bioactive Glass Deposition on PEEK/Bioactive Glass Layer. The International Journal of Advanced Manufacturing Technology. 2022;120(5):3885-3900.
100. Ur Rehman MA, Bastan FE, Nawaz A, Nawaz Q and Wadood A. Electrophoretic Deposition of PEEK/Bioactive Glass Composite Coatings on Stainless Steel for Orthopedic Applications: An Optimization for In Vitro Bioactivity and Adhesion Strength. The International Journal of Advanced Manufacturing Technology. 2020;108(5):1849-1862.
101. Boccaccini AR, Peters C, Roether JA, Eifler D, Misra SK and Minay EJ. Electrophoretic Deposition of Polyetheretherketone (PEEK) and PEEK/Bioglass® Coatings on NiTi Shape Memory Alloy Wires. Journal of Materials Science. 2006;41:8152-8159.
102. Ballo AM, Kokkari AK, Meretoja VV, Lassila LL, Vallittu PK and Narhi TO. Osteoblast Proliferation and Maturation on Bioactive Fiber-Reinforced Composite Surface. Journal of Materials Science: Materials in Medicine. 2008;19(10):3169-3177.
103. Stein GS, Lian JB, Stein JL, Van Wijnen AJ and Montecino M. Transcriptional Control of Osteoblast Growth and Differentiation. Physiological Reviews. 1996;76(2):593-629.
104. Rismanchian M, Khodaeian N, Bahramian L, Fathi M and Sadeghi-Aliabadi H. In-Vitro Comparison of Cytotoxicity of Two Bioactive Glasses in Micropowder and Nanopowder forms. Iranian journal of pharmaceutical research 2013;12:437-443.
الملخص العربي
تهدف هذه الدراسة الى تصنيع البولي ايثرايثر كيتون المركب من خلال دمج تركيزات مختلفة من انابيب الكربون النانوية و الزجاج الحيوي النشط و ذلك لتحسين الخواص الميكانيكية المستعرضة والخصائص البيولوجية لبوليمر البولي ايثر ايثر كيتون.
تم في هذه الدراسة تحضير الزجاج الحيوي النشط النانوي، ثم تحضير ثمانية مجموعات حسب تركيز انابيب الكربون النانوية و الزجاج الحيوي النشط في البولي ايثرايثر كيتون بعد مزجهم في وجود كحول ليثيلي بواسطة مازج مغناطيسي ثم تبخير الكحول الايثيلي. ثم تم تسخين البولي ايثر ايثر كيتون و مركبات البولي ايثر ايثر كيتون الى 400 درجة مئوية و ضغطهم في قوالب مجوفة.
تم عمل توصيف للعينات عن طريق توصيف مورفولوجية السطح باستخدام ميكروسكوب المسح الالكتروني، و التحقق من العناصر الكيميائية للعينات عن طريق الاشعة السينية، و تحديد المجموعات الوظيفية عن طريق الاشعة تحت الحمراء، و تحديد المراحل المتبلورة الموجودة في جميع المجموعات عن طريق الاشعة السينية.
تم قياس القوة المستعرضة و معامل المرونة بواسطة الة اختبار شاملة، ثم تقييم السطح المكسور بواسطة ميكروسكوب المسح الالكتروني. كما تم ايضا قياس زاوية التماس السطح بالمياه لتقييم قابلية السطح للتبلل بالمياه. ثم تم التقييم الحيوي للعينات عن طريق وضع العينات في سائل مشابه لسوائل الجسم لمدة شهرين و ذلك لتحليل قابلية السطح لتكون الهيدروكسي اباتايت، و تقييم قابلية الخلايا بانيات العظام للالتساق بسطح العينات بعد ثلاثة ايام، و تقييم حيوية الخلايا بانيات العظام بعد يوم و ثلاثة و سبعة ايام، و تقييم نشاط الفوسفاتيز القلوي بعد سبعة و اربعة عشر يوم.
أظهرت نتائج الاختبارات تحسنا في القوة المستعرضة و معامل المرونة معا للمجموعات التي تحتوي على 5% من انابيب الكربون النانوية و 3% من انابيب الكربون النانوية مع 5% من الزجاج الحيوي النشط و 5% من انابيب الكربون النانوية مع 5% من الزجاج الحيوي النشط. تم الحصول على اصغر زاوية التماس للمجموعة التي تحتوي على 5% من انابيب الكربون النانوية مع 5% من الزجاج الحيوي النشط تليها المجموعة التي تحتوي على 3% من انابيب الكربون النانوية مع 10% من الزجاج الحيوي النشط. أظهرت جميع العينات التي تحتوي على الزجاج الحيوي النشط تكوين رواسب تشبه الهيدروكسي اباتيت بعد غمرها في سائل مشابه لسوائل الجسم ، بالإضافة إلى تحسن في ارتباط الخلايا بانيات العظام بالعينات و حيوية الخلايا مقارنة بالخلايا الملاصقة لسطح البولي ايثر ايثر كيتون. كما اظهرت جميع عينات المركبات تحسنا في نشاط الفوسفاتيز القلوي للخلايا مقارنة بتلك الملاصقة لسطح البولي ايثر ايثر كيتون.
الاستنتاجات
تم بنجاح إعداد مركبات البولي ايثرايثر كيتون التي تحتوي على انابيب الكربون النانوية و الزجاج الحيوي النشط في هذه الدراسة، و يمكن استنتاج ما يلي:
أ‌. اضافة انابيب الكربون النانوية او مزيج من انابيب الكربون النانوية مع الزجاج الحيوي النشط له تاثير ايجابي على القوة المستعرضة للبولي ايثرايثر كيتون.
ب‌. تركيز بسيط من الزجاج الحيوي النشط هو اكثر فعالية في تحسين القوة المستعرضة للبولي ايثرايثر كيتون عن تركيز كبير.
ت‌. تركيز كبير لانابيب الكربون النانوية و مزيج من انابيب الكربون النانوية مع الزجاج الحيوي النشط لهم تاثير ايجابي على معامل مرونة البولي ايثرايثر كيتون.
ث‌. الزجاج الحيوي النشط ليس له تأثير على معامل المرونة.
ج‌. مزيج من انابيب الكربون النانوية مع الزجاج الحيوي النشط هو اكثر فعالية في تقليل زاوية الالتماس.
ح‌. الزجاج الحيوي النشط يمكنه ان يحسن من قدرة البولي ايثرايثر كيتون على تكوين الهيدروكسي اباتيت.
خ‌. تركيز كبير من الزجاج الحيوي النشط و مزيج من انابيب الكربون النانوية مع الزجاج الحيوي النشط يمكنه تحفيز تكوين العظام.
د‌. مركبات البولي ايثر ايثر كيتون التي تحيوي على 3% انابيب كربون نانوية مع 10% زجاج الحيوي نشط و 3 % انابيب كربون نانوية مع 5% زجاج الحيوي نشط و 10% زجاج الحيوي نشط واعدة في تصنيع زرعات خاصة بالمريض.
التوصية
يجب إجراء المزيد من الدراسات لتقييم خشونة السطح وإطلاق الأيونات وتغيرات مستوي الحموضه والاختبار في الجسم الحي.