Search In this Thesis
   Search In this Thesis  
العنوان
EFFECT OF SALINITY ON SOME MICROBIAL ACTIVITIES IN SOILS /
المؤلف
Youssef, Mounir Mohamed Ibrahim.
هيئة الاعداد
باحث / Mounir Mohamed Ibrahim Youssef
مشرف / Mohamed. A. EL.Howeity
مشرف / Hamed Mabrouk EL Kouny
مناقش / El-Houseny abd el-ghaffar
الموضوع
Agricultural lands. Agriculture.
تاريخ النشر
2022
عدد الصفحات
93 p :
اللغة
الإنجليزية
الدرجة
ماجستير
التخصص
علوم التربة
تاريخ الإجازة
1/1/2022
مكان الإجازة
جامعة مدينة السادات - المكتبة المركزية بالسادات - Department of Natural Resources Evaluation & Planning Development
الفهرس
Only 14 pages are availabe for public view

from 93

from 93

Abstract

 The application of Azospirillum Inoculation as biofertilizer alleviated the dangerous effect of salt stress on wheat plants.
 Application of NaCL as Salt strss decreased plant growth parameters and enzymes activity
 Application of Azospirillum Inoculation biofertilizer single or combined stimulated microbial enzymes activity in the rhiosphere soil.
 The results demonstrated significant variations in respective spectral characteristics related to the reflectance values over visible (VIS) and near infrared (NIR) ranges. The results further showed a clear difference in the combined shape of spectral signature and the wavelength-locality from 500 to 700 nm. It is also obvious that the spectral signature collected from red-edge from 670 to 750 and NIR from 700 to 1100 showed clearin reflectance value under different salinity treatments.
 The SRI extracted from VIS regions or red-edge with visble showed the highest R2 value with measured parameters. For example, RSI458,666 presented the highest R2 (0.79) with SFW, RSI608,604 presented the highest R2 (0.64) with SDW and R2 (0.72) with yield of tomato as well as, RSI654,652 presented the highest R2 (0.64) with DHA and R2 (0.59) with CO2.
REFERENCES
62
6. REFERENCES
Abd El-Hamid, E.A.M., El-Hawary, M.N.A., Khedr, Rania. A., Shahein, Alaa M.E.A., (2020). Evaluation of some bread wheat genotypes under soil salinity conditions. J. Plant Product., Mansoura Univ. 11 (2), 167–177.
Agricultura sustentável e conservação dos solos. Processos de degradação do solo. Salinização e sodificação. Ficha informativa no 4. Disponível em < http://soco.jrc.ec.europa.eu/documents/PTFactSheet-04.pdf> Acesso em 05/06/2011. Agricultural Salinity Assessment and Management. (1990). K.K. Tanji, Editor. American Society of Civil Engineers, New York, N.Y. Ahmad, I. and K.M. Khan (1988). Studies on enzymes activity in normal and saline soils. Pakistan Journal Agricultural Research, Vol. 9, No.4, pp. 506-508, ISSN 0251-0480. Ahmad, M., Shahzad, A., Iqbal, M., Asif, M., and Hirani, A. H. (2013a). Morphological and molecular genetic variation in wheat for salinity tolerance at germination and early seedling stage. Austral. J. Crop Sci. 7:66.
Ali, S., Hameed, S., Shahid, M., Iqbal, M., Lazarovits, G., and Imran, A. (2020). Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiol. Res. 232:126389.
Allen, S.C.; Fair, V.D.; Graetz, D.A.; SHIBU, J. & Ramachandran N.P.K. (2006). Phosphorus loss from organic versus inorganic fertilizers used in alley cropping on a Florida Ultisol. Agriculture, Ecosystems & Environment, Vol. 117, No 4, (December, 2006), pp. 290–298, ISSN: 0167-8809.
REFERENCES
63
Al-Naggar A. M. M., S. R. S. Sabry, M. M. M. Atta and Ola M. Abd El-Aleem(2015). Field Screening of Wheat (Triticum aestivum L.) Genotypes for Salinity Tolerance at Three Locations in Egypt. Journal of Agriculture and Ecology Research International 4(3): 88-104.
Anderson, R. & Xia, L.Z. (2001). Agronomic measures of P, Q/I parameters and lysimetercollectable P in subsurface soil horizons of a long-term slurry experiment. Chemosphere, Vol. 42, No 2, (January, 2001), pp. 171–178, ISSN: 0045-6535.
Arzani A, Ashraf M.(2017) Cultivated ancient wheats (Triticum spp.): A potential source of health-beneficial food products. Comp. Rev. Food Sci. Food Saf.; 16:477- 488. 10.1111/15414337.12262.
Association of official Agricultural chemists (A. O. A. C) (1985): Official Methods of Analysis. 12th Ed. Benjamin Franklin station, Washington, D. C., U.S. A. PP.490 – 510.
Ayman EL Sabagh, M. S. Islam, M. Skalicky, M. Ali Raza, K. Singh, M. A. Hossain, A. Hossain, W. Mahboob, M. A. Iqbal, D. Ratnasekera, R. K. Singhal, S. Ahmed, A. Kumari, A. Wasaya, O. Sytar, M. Brestic, Fatih ÇIG, M. Erman, M. Habib Ur Rahman, N. Ullah and A. Arshad (2021). Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment
Azam, F. & Ifzal, M. (2006). Microbial populations immobilizing NH4+-N and NO3- -N differ in their sensitivity to sodium chloride salinity in soil. Soil Biology & Biochemistry, Vol. 38, No 8, (August, 2006), pp. 2491–2494.
REFERENCES
64
Bacilio, M., Rodriguez, H., Moreno, M., Hernandez, J. P., and Bashan, Y. (2004). Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biol. Fert. Soils 40, 188–193. doi: 10.1007/s00374-004-0757-z
Balota EL, Chaves ECD (2010) Enzymatic activity and mineralization of carbon and nitrogen in soil cultivated with coffee and green manures. R Bras Ci Solo 34: 1573-1583.
Batra, L. and Manna, M.C. (1997). Dehydrogenase activity and microbial biomass carbon in salt affected soils of semiarid and arid regions. Arid Soil Research and Rehabilitation, Vol. 11, No 3, (Available online: January, 2009), pp. 295–303, ISSN 0890-3069. Bledsoe and Boopathy (2016). Bioaugmentation of microbes to restore coastal wetland plants to protect land from coastal erosion. International Biodeterioration and Biodegradation, 113.
Bot, A. J., Nachtergaele, F. O., and Young, A. (2000). Land resource potential and constraints at regional and country levels (L. a. W. D. Division, Trans.). Rome: Food and Agriculture Organization of the United Nations. World Soil Resources Reports, P.114.
Chakraborty U, Chakraborty BN, Chakraborty AP (2010) Influence of Serratia marcescens TRS-1 on growth promotion and induction of resistance in Camellia sinensis against Fomes lamaoensis. J Plant Inter 5(4): 261-272
REFERENCES
65
Chowdhury, N.; Marschner, P. & Burns, R.G. (2011). Soil microbial activity and community composition: impact of changes in matric and osmotic potential. Siol Biology and Biochemistry, Vol. 43, No 6, (June, 2011), pp. 1229-1236, ISSN: 0038-0717.
CODEVASF - Salinização do solo. Disponível em (2011). Soil salinization. http://www.codevasf.gov.br/programas_acoes/irrigacao/salinizacao-do-solo> Acesso em 10/03/2011. Cookson, P. (1999). Special variation in soil urease activity around irrigated date palms. Arid Soil Research and Rehabilitation, Vol. 13, No 2, (Available online: November, 2010), pp. 155–169, ISSN: 0890-3069
Daryanto S., Lixin Wang, Pierre-André Jacinthe (2016) Global Synthesis of Drought Effects on Maize and Wheat Production. PLOS ONE | DOI:10.1371/journal.pone.0156362 May 25, 2016.
Das SK and Varma A (2011) Role of enzymes in maintaining soil health. In: Shukla G, Varma A (eds) Soil enzymology. Springer-Verlag, Berlin Heidelberg, pp 25–42 Dick, R.P.; Breakwell, D.P.; Turco, R.F. (1996). Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Methods for Assessing Soil Quality. Soil Science Society of America, Madison, WI, USA. Pp. 247-272. difference in the short. term response of nitrogenase activity (C2H2 reduction) to difference in the short. term response of nitrogenase activity (C2H2 reduction) to