Search In this Thesis
   Search In this Thesis  
العنوان
Development of decentralized systems for purpose of reuse of the treated water in a safe and proper manner using nanotechnology /
الناشر
Ahmed Hamdy Saad Eldin Sadek ,
المؤلف
Ahmed Hamdy Saad Eldin Sadek
هيئة الاعداد
باحث / Ahmed Hamdy Saad Eldin Sadek
مشرف / Amin Mahmoud Mohammed Baraka
مشرف / Maha Mostafa Elshafei
مشرف / Mohammed Mahmoud Hefny
تاريخ النشر
2018
عدد الصفحات
222 P. :
اللغة
الإنجليزية
الدرجة
ماجستير
التخصص
Physical and Theoretical Chemistry
تاريخ الإجازة
1/10/2019
مكان الإجازة
جامعة القاهرة - كلية العلوم - Physical Chemistry
الفهرس
Only 14 pages are availabe for public view

from 295

from 295

Abstract

Nano-scale zero valent iron (nZVI) was synthesized in an ethanol media by reduction of ferric iron using sodium borohydride as a reducing agent under atmospheric conditions. The synthesized iron nanoparticles are mainly in zero valent oxidation state and remain without significant oxidation for weeks. A methodical characterization of nZVI was carried out using XRD, SEM-EDS, TEM, UV, FT-IR, XRF, TGA, and DLS studies. The acquired iron nanoparticles consist of a zero violent core embracing a rest oxide shell. The iron nanoparticles diameter was predominantly in the range of 10.0 - 100 nm. In the present study methylene blue (MB) dye and copper (II) ion removal efficiencies of laboratory synthesized nZVI particles in relation to the effect of nZVI dosages, pH, dye and Cu (II) ion initial concentrations, agitation speed, contact time and temperature, effect of salts and detergents on MB removal efficiency were determined at bench scale. In the MB case, increasing nZVI doses and temperature enhanced the decolorization of the MB by 95.81, and 91.66 %, respectively; increasing the agitation speed, contact time, and the presence of salts increased MB removal efficiency to {u2248} 100.0 %. The degradation in color decreased from 91.66 % to 72.00 % at 10.0 min with increasing concentration of dye from 10.0 mg/L to 70.0 mg/L, respectively, and to 66.87 and 36.62 % in the presence of Ariel® and Vanish® commercial detergents, respectively. In the case of copper ion, increasing nZVI doses, contact time, agitation speed, and temperature leads to improvement of Cu (II) removal efficiency up to 99.94, {u2248} 100.0, 99.83, and 99.92 %, respectively