Search In this Thesis
   Search In this Thesis  
العنوان
Blade Profile Geometry Generation for Low Specific Speed Centrifugal Pump \
المؤلف
Khaled, Mohamed El-Sayed El-Badawy Mohamed.
هيئة الاعداد
باحث / محمد السيد البدوى محمد أحمد خالد
mohamed.khaled@alex-eng.edu.eg
مشرف / إيهاب جابر آدم
ihabadam@yahoo.com
مشرف / أحمد حسن متولي الشريف
مناقش / حسن علي حسن وردة
Hassan.warda@usa.net
مناقش / محمد جلال الدين إبراهيم خلف الله
الموضوع
Mathematics.
تاريخ النشر
2019.
عدد الصفحات
85 p. :
اللغة
الإنجليزية
الدرجة
ماجستير
التخصص
الهندسة (متفرقات)
تاريخ الإجازة
20/2/2019
مكان الإجازة
جامعة الاسكندريه - كلية الهندسة - الرياضيات و الفيزياء الهندسية
الفهرس
Only 14 pages are availabe for public view

from 106

from 106

Abstract

Direct or inverse design methods for centrifugal pumps play an important role in investigating their performance. In this thesis, a very low specific speed centrifugal pump impeller of ns=9.5 (metric), three blades and 222 ° wrap angle is used as a basic reference. This pump is investigated using the direct and inverse design methods to achieve the blade shape geometry and examine the blade angle distribution and the pump performance. The blade angle progression affects the pump hydrodynamic and suction performance. Four models with different blade angle distribution were used to perform the pump performance. The linear and non-linear derived correlation models were designed firstly using ANSYS-BladeGen module then studied numerically using ANSYS-CFX module to solve the three-dimensional Navier-Stokes equations. Validation of the numerical simulation of the investigated centrifugal pump is done using the experimental data. Numerical results show that the change in the blade angle distribution has an influence on the blade wrap angle. Consequently, the variation in the blade wrap angle affects the pump head and the relative velocity distribution. The pressure gradient varies in the pump with changing the blade length. Using the velocity streamlines and the velocity vector, the eddies existence and distribution in the blade suction side affect the relative velocity distribution and the pump performance. It is found that the blade with the smallest length has the best velocity distribution. Whenever the blade length increases it is found that the pump head will be increased. A mathematical modeling design method is used to improve the blade profile geometry. It is found that the newly designed blade profile has better performance than the original pump model. This method depends on the solution of the potential flow field in the impeller blade to blade passage.